
Centre for Dis
rete Mathemati
s and Computing

S
hool of Computer S
ien
e & Ele
tri
al Engineering

and Department of Mathemati
s,

The University of Queensland, QLD 4072

Te
hni
al Report #14

Title: ACE for Amateurs (Version 3.001)

Author: Colin Ramsay

Date: April 4, 2001

Version: draft (in
omplete)

ii

Contents

Contents iii

List of �gures vii

List of tables viii

1 Introdu
tion 1

1.1 Administrivia . 1

1.2 Code . 1

2 Ba
kground 3

2.1 Terminology . 3

2.2 Notation . 3

2.3 History . 4

3 ACE Level 2:

an intera
tive interfa
e 5

3.1 Enumeration mode & style . 5

3.2 Prede�ned strategies . 6

4 ACE Level 1:

a
ore wrapper 8

5 ACE Level 0:

the
ore enumerator 9

A Examples 10

A.1 Getting started . 10

A.2 Emulating Sims . 14

A.3 Row �lling . 16

A.4 Equivalent presentations . 18

A.5 Dedu
tion queues . 18

A.6 Large enumerations . 18

A.7 Looping . 19

A.8 Use of st . 19

A.9 Use of
y, n
,

 and r
 . 20

iii

B Command summary 21

B.1 add gen[erators℄ / sg : <word list> ; 22

B.2 add rel[ators℄ / rl : <relation list> ; 22

B.3 aep : 1..7 ; . 22

B.4 ai / alter i[nput℄ : [<filename>℄ ; 23

B.5 ao / alter o[utput℄ : [<filename>℄ ; 23

B.6 as[is℄ : [0/1℄ ; . 23

B.7 beg[in℄ / end / start ; . 24

B.8 bye / exit / q[uit℄ ; . 24

B.9

 /
oset
oin
[iden
e℄ : <int> ; 24

B.10
[fa
tor℄ /
t[fa
tor℄ : [<int>℄ ; 24

B.11
he
k / redo ; . 24

B.12
om[pa
tion℄ : [0..100℄ ; . 24

B.13
ont[inue℄ ; . 25

B.14
y[
les℄ ; . 25

B.15 ded mo[de℄ / dmod[e℄ : [0..4℄ ; 25

B.16 ded si[ze℄ / dsiz[e℄ : [0/1..℄ ; 26

B.17 def[ault℄ ; . 26

B.18 del gen[erators℄ / ds : <int list> ; 26

B.19 del rel[ators℄ / dr : <int list> ; 26

B.20 d[ump℄ : [0/1/2[,0/1℄℄ ; . 26

B.21 easy ; . 27

B.22 e
ho : [0/1℄ ; . 27

B.23 enum[eration℄ / group name : <string> ; 27

B.24 fel[s
h℄ : [0/1℄ ; . 27

B.25 f[fa
tor℄ / fi[ll fa
tor℄ : [0/1..℄ ; 27

B.26 gen[erators℄ / subgroup gen[erators℄ : <word list> ; 28

B.27 gr[oup generators℄: [<letter list> / <int>℄ ; 28

B.28 group relators / rel[ators℄ : <relation list> ; 28

B.29 hard ; . 29

iv

B.30 h[elp℄ ; . 29

B.31 hlt ; . 29

B.32 ho[le limit℄ : [-1/0..100℄ ; . 29

B.33 look[ahead℄ : [0/1..4℄ ; . 29

B.34 loop[limit℄ : [0/1..℄ ; . 30

B.35 max[
osets℄ : [0/2..℄ ; . 30

B.36 mend[elsohn℄ : [0/1℄ ; . 30

B.37 mess[ages℄ / mon[itor℄ : [<int>℄ ; 31

B.38 mo[de℄ ; . 32

B.39 n
 / normal[
losure℄ : [0/1℄ ; 32

B.40 no[relators in subgroup℄ : [-1/0/1..℄ ; 32

B.41 oo / order[option℄ : <int> ; 33

B.42 opt[ions℄ ; . 33

B.43 par[ameters℄ ; . 33

B.44 path[
ompression℄ : [0/1℄ ; . 33

B.45 pd mo[de℄ / pmod[e℄ : [0/1..3℄ ; 34

B.46 pd si[ze℄ / psiz[e℄ : [0/2/4/8/...℄ ; 34

B.47 print det[ails℄ / sr : [0/1..5℄ ; 34

B.48 pr[int table℄ : [[-℄<int>[,<int>[,<int>℄℄℄ ; 34

B.49 pure
[t℄ ; . 35

B.50 pure r[t℄ ; . 35

B.51 r
 / random
oin
[iden
es℄: <int>[,<int>℄ ; 35

B.52 re
[over℄ /
ontig[uous℄ ; . 35

B.53 rep : 1..7[,<int>℄ ; . 35

B.54 restart ; . 36

B.55 r[fa
tor℄ / rt[fa
tor℄ : [<int>℄ ; 36

B.56 row[filling℄ : [0/1℄ ; . 36

B.57 s
 / stabil[ising
osets℄ : <int> ; 36

B.58 sims : 1/3/5/7/9 ; . 37

B.59 st[andard table℄ ; . 37

v

B.60 stat[isti
s℄ / stats ; . 37

B.61 style ; . 37

B.62 subg[roup name℄ : <string> ; . 37

B.63 sys[tem℄ : <string> ; . 38

B.64 text : <string> ; . 38

B.65 ti[me limit℄ : [-1/0/1..℄ ; . 38

B.66 tw / tra
e[word℄ : <int>,<word> ; 38

B.67 wo[rkspa
e℄ : [<int>[k/m/g℄℄ ; 38

B.68 # ... <newline> . 39

C State ma
hine details 40

D Abbreviations 47

Referen
es 51

vi

List of �gures

C.1 The R/C style . 40

C.2 The R* style . 41

C.3 The Cr style . 42

C.4 The C style . 43

C.5 The R
 style . 44

C.6 The R style . 45

C.7 The CR style . 46

vii

List of tables

2.1 The
oset table for S

4

=S

3

. 4

3.1 The styles . 6

3.2 The prede�ned strategies . 7

B.1 Possible enumeration results . 31

B.2 Possible progress messages . 32

viii

Chapter 1

Introdu
tion

ACE is designed to work with partial tables, as well as
omplete tables exhibiting a

�nite index. TBA: Intended user groups ...

ACE is divided into three `levels'. The a
tual enumerator,
alled the \
ore enumera-

tor", is ACE Level 0, while the standard driver for the enumerator, the \
ore wrapper",

is ACE Level 1. A stand-alone `example' appli
ation,
alled the \intera
tive interfa
e",

is ACE Level 2. To assist those interested in the a
tual sour
e
ode, the fun
tion and

variable names are prepended with AL0 , AL1 & AL2 respe
tively. ACE also in
ludes

the \proof table" pa
kage (PT for short), whi
h
an be
ompiled into the exe
utable

if required. The proof table
uts a
ross the level stru
ture, and
an only be used as

part of the intera
tive interfa
e. Fun
tion and variable names of the PT pa
kage are

prepended with PT . TBA: this pa
kage ...

TBA: version history, 3.000 vs 3.001, ... TBA: default build ...

1.1 Administrivia

It is assumed that ACE is run on a Unix-box of some des
ription. TBA: how to

ompile ...

In order not to
lutter-up the body of the text with examples, the bulk of these are

gathered into a separate appendix. These examples illustrate many of the features of

ACE, and
an also serve as a sour
e of interesting enumerations. Some are referred

to in the text, but they
an all be read independently. ACE s
ript input generating

these examples is available in the ex***.in �les, as part of the do
umentation.

1.2 Code

You will note in the sour
e
ode various se
tions pre
eded by a warning
omment

ontaining the DTT a
ronym. This stands for \debug/test/tra
e", and denotes
ode

that was added temporarily for one reason or another. None of this
ode should

be a
tive; i.e., it should all be
ommented out. It does not form part of the ACE

distribution. Of
ourse, gurus will �nd this
ode intriguing, and will probably want

to un
omment it to see what happens!

TBA: The sour
e
ode is heavily
ommented, and is
onsidered to be part of the

do
umentation. Con
eptually,
oset enumeration is easy, but there are tri
ky details

1

and subtle performan
e issues { you need to read the sour
e
ode, to experiment, and

to think to appre
iate these.

2

Chapter 2

Ba
kground

2.1 Terminology

Although ACE
an a

ept either letters or numbers for group generators, we generally

use letters, sin
e these are mu
h easier to understand. (Unless you need more than

26 generators, or are using some form of automati
ally generated presentation, you

should adopt the same
onvention.) Lower-
ase letters denote generators, with in-

verses being denoted by either upper-
ase letters or negative supers
ripts; e.g., ABab

and a

�1

b

�1

ab are equivalent. We use 1 to denote the identity element and/or the

subgroup (i.e.,
oset #1).

. . . s
anning, applying,
losing. . . . dead
oset(s),
ompa
t(ion).

2.2 Notation

For a subgroup H of a group G, we represent by G=H the set of right
osets of H in

G (not the quotient group of G by H whi
h requires that H be normal in G), i.e.

G=H = fHx j x 2 Gg:

Two
osets Hx;Hy 2 G=H are equal, i.e.
oin
ident, if and only if xy

�1

2 H. Also,

any two
osets of G=H are either
oin
ident or disjoint. The
ardinality of G=H is

the number of distin
t
osets in G=H, and is equal to the index jG : Hj of H in G;

if G is �nite then jG : Hj = jGj=jHj.

Some standard groups that arise in our examples are:

S

n

, the full symmetri
 group on n letters;

A

n

, the full alternating group on n letters; and

C

n

, the
y
li
 group of order n.

A group G will often be de�ned via a presentation of the form

hgenerators j relatorsi:

In this
ase, the elements of G are words in the generators and the relators are a list

of words that are equivalent to the empty word (i.e. identity element) in G. A
tually,

amongst the relators we will also allow relations, whi
h are equations of the form

w

1

= w

2

(equivalent to the relator w

1

w

�1

2

), where w

1

; w

2

are words in the generators

of G.

3

Table 2.1: The
oset table for S

4

=S

3

Generators

oset b

1

b

2

b

3

O

4

(G

3

) O

4

O

4

O

3

O

3

(G

3

b

3

) O

3

O

2

O

4

O

2

(G

3

b

3

b

2

) O

1

O

3

O

2

O

1

(G

3

b

3

b

2

b

1

) O

2

O

1

O

1

2.3 History

The
on
ept of a subgroup, and its
osets, has been known sin
e the beginnings of

group theory. One of the earliest (pra
ti
al?) uses of
osets seems to have been

by Moore [12℄, who gives presentations for S

n

& A

n

and proves them
orre
t by, in

e�e
t,
ounting the n
osets of S

n

=S

n�1

& A

n

=A

n�1

. Di
kson [5, x264℄ presents a more

a

essible a

ount, and expli
itly notes that \these sets form a re
tangular table". To

illustrate this, we paraphrase Di
kson's proof for the
ase S

4

.

Let G

4

be the abstra
t group

hb

1

; b

2

; b

3

j b

2

1

; b

2

2

; b

2

3

; b

1

b

3

= b

3

b

1

; b

1

b

2

b

1

= b

2

b

1

b

2

; b

2

b

3

b

2

= b

3

b

2

b

3

i:

Now S

4

is generated by the transpositions s

1

= (12), s

2

= (23) & s

3

= (34). Putting

s

i

= b

i

, 1 � i � 3, we see that these transpositions satisfy the de�ning relations of

G

4

. So S

4

is a quotient group of G

4

, and jG

4

j � jS

4

j = 4! = 24.

That jG

4

j � 24, and so G

4

�

=

S

4

, is proved by indu
tion. Let G

3

be the subgroup

of G

4

generated by b

1

& b

2

. (The a
tual indu
tion is on the b

i

. For our purposes,

we'll simply assume that jG

3

j � 6.) Now
onsider the
osets O

4

= G

3

, O

3

= G

3

b

3

,

O

2

= G

3

b

3

b

2

& O

1

= G

3

b

3

b

2

b

1

. We'll show that these four
osets are merely permuted

by the b

i

, so that the index jG

4

: G

3

j � 4; hen
e jG

4

j � 24, as required.

Obviously, O

4

b

3

= O

3

, O

3

b

2

= O

2

& O

2

b

1

= O

1

. Sin
e the b

i

are involutions, then

O

3

b

3

= G

3

b

3

b

3

= G

3

= O

4

. Similarly, O

2

b

2

= O

3

& O

1

b

1

= O

2

. Sin
e b

1

& b

2

generate

G

3

, then O

4

b

1

= O

4

b

2

= O

4

. Now, sin
e b

1

& b

3

ommute, then O

3

b

1

= G

3

b

3

b

1

=

G

3

b

1

b

3

= O

4

b

1

b

3

= O

4

b

3

= O

3

. Now
onsider O

1

b

3

= G

3

b

3

b

2

b

1

b

3

= G

3

b

3

b

2

b

3

b

1

. Sin
e

b

2

b

3

b

2

= b

3

b

2

b

3

, then this
an be written as G

3

b

2

b

3

b

2

b

1

= O

4

b

2

b

3

b

2

b

1

= O

4

b

3

b

2

b

1

= O

1

.

In a similar manner, O

1

b

2

= O

1

& O

2

b

3

= O

2

. Our
oset table (see Table 2.1) is now

omplete, so jG

4

: G

3

j � 4. Note that ea
h b

i

gives rise to the transposition (O

i

O

i+1

),

and leaves the other
osets �xed.

The
onstru
tion of a
oset table was systematised and popularised by Todd & Cox-

eter [16℄. The �rst
omputer implementation was that of Haselgrove in 1953. This,

along with other early implementations, is des
ribed by Lee
h [9℄. Detailed a

ounts

of the te
hniques used in
oset enumeration
an be found in [3, 6, 10, 13, 15℄. For-

mal proofs of the
orre
tness of various strategies for
oset enumeration are given in

[11, 13, 15℄.

4

Chapter 3

ACE Level 2:

an intera
tive interfa
e

Level 2 of ACE is a
omplete, standalone appli
ation for generating and manipulating

oset tables. It
an be used intera
tively, or
an take its input from a s
ript �le. It

is reasonably robust and
omprehensive, but no attempt has been made to make it

`industrial strength' or to give it any of the features of, say, Magma [2℄ or GAP [14℄.

Most of its features have been added in response to user requests, and it is assumed

that the user is `
ompetent'. One of the primary goals in developing ACE was to

demonstrate how to
orre
tly use ACE Levels 0 & 1; some
are is taken to ensure that

the user
annot generate `invalid' tables.

A
omplete des
ription of all the Level 2
ommands is given in Appendix B.

3.1 Enumeration mode & style

The
ore enumerator takes two arguments, whi
h sele
t the enumeration mode and

style. The mode determines whether or not we retain any existing table information.

Initially, we start with an empty table and use the begin mode (the beg
ommand).

This
an be followed by a series of
ontinue and/or redo modes (the
ont & redo

ommands) whi
h build on or modify the table generated by the begin mode. So

it is possible to do an enumeration in stages, altering the parameters at ea
h stage.

Various interlo
ks are present to prevent a
ombination of
hoi
es whi
h (potentially)

leads to an invalid table.

The enumeration style is the balan
e between C-style de�nitions (i.e.,
oset table

based, Fels
h style) and R-style de�nitions (i.e., relator based, HLT style), and is

ontrolled by the
t & rt parameters. The absolute values of these parameters sets

the number of de�nitions (C-style) or
oset appli
ations (R-style) per pass through

the enumerator's main loop. The sign of these parameters sets the style, and the

possible
ombinations are given in Table 3.1

In R style all the de�nitions are made via relator s
ans; i.e., this is HLT mode. In

C style all the de�nitions are made in the next empty table slot and are tested in

all essentially di�erent positions in the relators; i.e., this is Fels
h mode. In R/C

style we run in R style until an over
ow, perform a lookahead on the entire table,

and then swit
h to CR style. Defaulted R/C style is the default style, and here we

use R/C style with
t:1000 and rt set to approximately 2000 divided by the total

5

Table 3.1: The styles

Rt value Ct value style name

<0 <0 R/C

<0 0 R*

<0 >0 Cr

0 <0 C

0 0 R/C (defaulted)

0 >0 C

>0 <0 R

>0 0 R

>0 >0 CR

length of the relators, in an attempt to balan
e R & C de�nitions when we swit
h to

CR style. R
 & Cr styles are like R & C styles, ex
ept that a single C or R style pass

(respe
tively) is done after the initial R or C style pass. R* style makes de�nitions

the same as R style, but tests all de�nitions as for C style. In CR style alternate

passes of C style and R style are performed, with all de�nitions tested. The Ct < 0

C style is reserved for future use, and should not be used.

3.2 Prede�ned strategies

The versatility of ACE means that it
an be diÆ
ult to sele
t appropriate parameters

when presented with a new enumeration. The problem is
ompounded by the fa
t that

no generally appli
able rules exist to predi
t, given a presentation, whi
h parameter

settings are `good'. To help over
ome this problem, ACE
ontains various
ommands

whi
h sele
t parti
ular enumeration strategies. One or other of these strategies may

work and, if not, the results may indi
ate how the parameters
an be varied to obtain

a su

essful enumeration. The thirteen standard strategies are listed in Table 3.2.

Note that we expli
itly (re)set all of the listed enumerator parameters in all of the

prede�ned strategies, even although some of them have no e�e
t. For example, the fi

value is irrelevant in HLT mode. The idea behind this is that, if you later
hange some

parameters individually, then the enumeration retains the `
avour' of the last sele
ted

prede�ned strategy. Note also that other parameters whi
h may a�e
t an enumeration

are left untou
hed by setting one of the prede�ned strategies; for example, the values

of max & asis. These parameters have an e�e
t whi
h is independent of the sele
ted

strategy.

Note that, apart from the fel:0 & sims:9 strategies, all of the strategies are distin
t,

although some are very similar. Further details of ea
h strategy are
ontained in their

entry in Appendix B.

6

Table 3.2: The prede�ned strategies

parameter

strategy path row mend no look
om
t rt � pmod psiz dmod dsiz

def n y n -1 n 10 0 0 0 3 256 4 1000

easy n y n 0 n 100 0 1000 1 0 256 0 1000

fel:0 n n n 0 n 10 1000 0 1 0 256 4 1000

fel:1 n n n -1 n 10 1000 0 0 3 256 4 1000

hard n y n -1 n 10 1000 1 0 3 256 4 1000

hlt n y n 0 1 10 0 1000 1 0 256 0 1000

pure
 n n n 0 n 100 1000 0 1 0 256 4 1000

pure r n n n 0 n 100 0 1000 1 0 256 0 1000

sims:1 n y n 0 n 10 0 1000 1 0 256 0 1000

sims:3 n y n 0 n 10 0 -1000 1 0 256 4 1000

sims:5 n y y 0 n 10 0 1000 1 0 256 0 1000

sims:7 n y y 0 n 10 0 -1000 1 0 256 4 1000

sims:9 n n n 0 n 10 1000 0 1 0 256 4 1000

7

Chapter 4

ACE Level 1:

a
ore wrapper

ACE Level 0 is a
omplete, eÆ
ient
oset enumerator. However, it is `naked', in the

sense that it expe
ts all its data stru
tures to be
orre
tly setup and it assumes that

it is `sensibly' driven. ACE Level 1 is a simple wrapper for Level 0 whi
h pro
esses

the presentation and the parameters, and sets up the appropriate data stru
tures. It

ontains some utility routines to help drive ACE, and it prevents some of the more

obvious errors. Although it has to be used with
are, the wrapper is a great deal

easier to drive than the
ore enumerator, and is its re
ommended interfa
e.

8

Chapter 5

ACE Level 0:

the
ore enumerator

TBA: . . .

9

Appendix A

Examples

In this appendix we give some examples of ACE runs. A stand-alone dis
ussion of

some of the features of these runs is in
luded, although parts of these runs are men-

tioned in the body of the text, as illustrations of spe
i�
 features of ACE's behaviour.

The ex***.in �les supplied as part of this do
umentation
an be used to run these

examples, although an example may be presented as if it were generated intera
-

tively, and the output may be edited for reasons of spa
e or perspi
uity. There may

be minor variations in the exa
t format of the output, sin
e ACE is
ontinually being

`improved'. Unless otherwise noted, all parameters are defaulted and the default build

of ACE was used. In multipart runs, note that parameters from an earlier part may

arry a
ross to a later one. Note that some of the examples may require a ma
hine

with a large amount of memory.

A.1 Getting started

This example uses input �le ex000.in, and illustrates the basi
s of ACE. Note how

the input is generally insensitive to
ommand synonyms,
apitalisation, white spa
e,

and : & ;
hara
ters. When ACE starts up, it prints out its version, the date & time,

and the name of the host on whi
h it's running. If we attempt to do an enumeration

immediately we get an error, sin
e the la
k of generators means we
an't build the

(empty)
oset table.

ACE 3.001 Wed Apr 4 22:35:40 2001

===

Host information:

name = mango

end;

** ERROR (
ontinuing with next line)

an't start (no generators?)

After de�ning two generators, we
an do an enumeration. The default state is not to

e
ho the presentation or print any messages; only the result line is printed. The group

is free, sin
e there are no relators, and the subgroup is trivial. So the enumeration

over
ows.

gr:ab; # A stupid
omment

Begin

OVERFLOW (a=249998 r=83333 h=83333 n=249999; l=337
=0.15; m=249998 t=249998)

10

The sr
ommands dumps out the presentation and the parameters for the run. All

of these are
urrently defaulted, apart from those dependent on there being two

(non-involutionary) generators.

sr:1;

#--- ACE 3.001: Run Parameters ---

Group Name: G;

Group Generators: ab;

Group Relators: ;

Subgroup Name: H;

Subgroup Generators: ;

Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;

As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;

C:0; R:0; Fi:7; PMod:3; PSiz:256; DMod:4; DSiz:1000;

#---------------------------------

With sr:2 only the Group Name line is printed. Similarly, sr:3, sr:4 and sr:5 print

the Group Relators, Subgroup Name and Subgroup Generators lines, respe
tively.

sr:2;

Group Name: G;

Next we print out the �rst part of the table. Note that, as there are no relators,

the table has separate
olumns for generator inverses. So the default workspa
e of

1000000 words allows a table of 249998 = 1000000=4�2
osets. As row �lling is on by

default, the table is simply �lled with
osets in order. Note that a
ompa
tion phase

is done before printing the table, but that this does nothing here (the lower-
ase
o

tag), sin
e there are no dead
osets. The
oset representatives are simply all possible

freely redu
ed words, in length plus lexi
ographi
 order.

pr:-1,12;

o: a=249998 r=83333 h=83333 n=249999;
=+0.00

oset | a A b B order rep've

-------+---

1 | 2 3 4 5

2 | 6 1 7 8 0 a

3 | 1 9 10 11 0 A

4 | 12 13 14 1 0 b

5 | 15 16 1 17 0 B

6 | 18 2 19 20 0 aa

7 | 21 22 23 2 0 ab

8 | 24 25 2 26 0 aB

9 | 3 27 28 29 0 AA

10 | 30 31 32 3 0 Ab

11 | 33 34 3 35 0 AB

12 | 36 4 37 38 0 ba

We now set things up to do the alternating group on �ve letters, of order 60. We

turn messaging on, but set the interval high enough so that there will be no progress

messages.

Enum: A_5;

rel: a^2, b^3, ababababab;

subgr: trivial;

mess: 1000; start;

11

The presentation and the parameters are e
hoed, the enumeration is performed, and

then the results of the run are printed. Note that the exponent of the ababababab

word has been
orre
tly dedu
ed, and that a is treated as an involution. So the table

has only three
olumns now. De�nitions are HLT-style, and a total of 76
osets (in
l.

the subgroup) are de�ned.

#--- ACE 3.001: Run Parameters ---

Group Name: A_5;

Group Generators: ab;

Group Relators: (a)^2, (b)^3, (ab)^5;

Subgroup Name: trivial;

Subgroup Generators: ;

Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;

As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;

C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

#---------------------------------

INDEX = 60 (a=60 r=77 h=1 n=77; l=3
=0.01; m=66 t=76)

We now use a non-trivial subgroup, and monitor all the a
tions of the enumerator.

Subgroup Name: C_5 ;

gen:ab;

Monit :1

END;

#--- ACE 3.001: Run Parameters ---

Group Name: A_5;

Group Generators: ab;

Group Relators: (a)^2, (b)^3, (ab)^5;

Subgroup Name: C_5;

Subgroup Generators: ab;

Wo:1000000; Max:333331; Mess:1; Ti:-1; Ho:-1; Loop:0;

As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;

C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

#---------------------------------

AD: a=2 r=1 h=1 n=3; l=1
=+0.00; m=2 t=2

SG: a=2 r=1 h=1 n=3; l=1
=+0.00; m=2 t=2

RD: a=3 r=1 h=1 n=4; l=2
=+0.00; m=3 t=3

RD: a=4 r=2 h=1 n=5; l=2
=+0.00; m=4 t=4

RD: a=5 r=2 h=1 n=6; l=2
=+0.00; m=5 t=5

RD: a=6 r=2 h=1 n=7; l=2
=+0.00; m=6 t=6

RD: a=7 r=2 h=1 n=8; l=2
=+0.00; m=7 t=7

RD: a=8 r=2 h=1 n=9; l=2
=+0.00; m=8 t=8

RD: a=9 r=2 h=1 n=10; l=2
=+0.00; m=9 t=9

CC: a=8 r=2 h=1 n=10; l=2
=+0.00; d=0

RD: a=9 r=5 h=1 n=11; l=2
=+0.00; m=9 t=10

RD: a=10 r=5 h=1 n=12; l=2
=+0.00; m=10 t=11

RD: a=11 r=5 h=1 n=13; l=2
=+0.00; m=11 t=12

RD: a=12 r=5 h=1 n=14; l=2
=+0.00; m=12 t=13

RD: a=13 r=5 h=1 n=15; l=2
=+0.00; m=13 t=14

RD: a=14 r=5 h=1 n=16; l=2
=+0.00; m=14 t=15

CC: a=13 r=6 h=1 n=16; l=2
=+0.00; d=0

CC: a=12 r=6 h=1 n=16; l=2
=+0.00; d=0

INDEX = 12 (a=12 r=16 h=1 n=16; l=3
=0.00; m=14 t=15)

We now dump out the statisti
s a

umulated during the run. The run had a=12 &

t=15, so there must have been three
oin
iden
es (q
oin
=3). Of these, two were

12

primary
oin
iden
es (rd
oin
=2). Sin
e t=15, there must have been fourteen
oset

de�nitions; one was during the appli
ation of
oset #1 (i.e., the subgroup) to the

subgroup generator (apdefn=1), and the remainder during the appli
ation of the

osets to the relators (rddefn=13).

STATisti
s;

#- ACE 3.001: Level 0 Statisti
s -

d
oin
=0 rd
oin
=2 ap
oin
=0 rl
oin
=0
l
oin
=0

x
oin
=2 x
ols12=4 q
oin
=3

xsave12=0 s12dup=0 s12new=0

x
rep=6
repred=0
repwrk=0 x
omp=0
ompwrk=0

xsaved=0 sdmax=0 sdoflow=0

xapply=1 apdedn=1 apdefn=1

rldedn=0
ldedn=0

xrdefn=1 rddedn=5 rddefn=13 rdfill=0

x
defn=0
ddpro
=0
dddedn=0
ddedn=0

dgap=0
didefn=0
didedn=0
dpdl=0
dpof=0

dpdead=0
dpdefn=0
ddefn=0

#---------------------------------

Note how the pre-printout
ompa
tion phase now does some work (the upper-
ase CO

tag), sin
e there were
oin
iden
es, and hen
e dead
osets. Note how b/B have been

used as the �rst two
olumns, sin
e these must be o

upied by a generator/inverse

pair or a pair of involutions. The a
olumn is also the A
olumn, as a is an involution.

(Using asis and inputting the a^2 relator as aa, however, stops ACE from treating

a as an involution and the
olumns are not reordered. We will see this later.)

print TABLE : -1, 12 ;

CO: a=12 r=13 h=1 n=13;
=+0.00

oset | b B a order rep've

-------+--------------------------------------

1 | 3 2 2

2 | 1 3 1 3 B

3 | 2 1 4 3 b

4 | 8 5 3 5 ba

5 | 4 8 6 2 baB

6 | 9 7 5 5 baBa

7 | 6 9 8 3 baBaB

8 | 5 4 7 5 bab

9 | 7 6 10 5 baBab

10 | 12 11 9 3 baBaba

11 | 10 12 12 2 baBabaB

12 | 11 10 11 3 baBabab

If we de�ne the generator order to be that of the
olumns, then the table above

is not in
anoni
 form, and the
oset representatives are not in order. We now

standardise the table; note the
ompa
tion phase before standardisation, although

it does nothing in this parti
ular
ase. Note how, if we read through the table in

row-major order, new
osets are introdu
ed using the smallest available number, and

that the representatives are now in order and are minimal.

st;

o/ST: a=12 r=13 h=1 n=13;
=+0.00

13

pr:-1,12;

o: a=12 r=13 h=1 n=13;
=+0.00

oset | b B a order rep've

-------+--------------------------------------

1 | 2 3 3

2 | 3 1 4 3 b

3 | 1 2 1 3 B

4 | 5 6 2 5 ba

5 | 6 4 7 5 bab

6 | 4 5 8 2 baB

7 | 8 9 5 5 baba

8 | 9 7 6 5 baBa

9 | 7 8 10 3 babaB

10 | 11 12 9 3 babaBa

11 | 12 10 12 3 babaBab

12 | 10 11 11 2 babaBaB

We now exit ACE, printing out the version and the date & time again.

q

===

ACE 3.001 Wed Apr 4 23:09:17 2001

A.2 Emulating Sims

Here we demonstrate the various sims modes, and see if we
an dupli
ate the m (max-

imum a
tive
osets) and t (total
osets de�ned) values (see the input �le ex001.in).

The ability to do so gives our
on�den
e in the
orre
tness of ACE a large boost. (In

Se
tion A.8, we show how we
an use standard and one of ACE's sims modes to ap-

proximate one of Sims' even-numbered strategies.) We work with the formal inverses

of the relators and subgroup generators from [15℄, sin
e de�nitions are made from the

front in Sims' routines and from the rear in ACE. We may also have to use the asis

ag, to for
e the
olumn order (by entering involutions as xx) and to preserve the

relator ordering. We mat
h Sims' values for R style & R* style (sims:1 & 3) and C

style (sims:9), but may not do so if we use Mendelsohn (sims:5 & 7); this makes

sense, sin
e the order of pro
essing
y
led relators is not spe
i�ed by Sims.

The input and output �les for Example 5.2:

gr: r,s,t;

rel: (r^tRR)^-1, (s^rSS)^-1, (t^sTT)^-1;

text: ; sr;

text: ** Sims:1 (
f. 1502/1550) ...; sims:1; end;

text: ** Sims:3 (
f. 673/673) ...; sims:3; end;

text: ** Sims:5 (
f. 1808/1864) ...; sims:5; end;

text: ** Sims:7 (
f. 620/620) ...; sims:7; end;

text: ** Sims:9 (
f. 588/588) ...; sims:9; end;

#--- ACE 3.001: Run Parameters ---

Group Name: G;

Group Relators: rrTRt, ssRSr, ttSTs;

Subgroup Name: H;

Subgroup Generators: ;

#---------------------------------

14

** Sims:1 (
f. 1502/1550) ...

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=1502 t=1550)

** Sims:3 (
f. 673/673) ...

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=673 t=673)

** Sims:5 (
f. 1808/1864) ...

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.01; m=1603 t=1603)

** Sims:7 (
f. 620/620) ...

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=615 t=615)

** Sims:9 (
f. 588/588) ...

INDEX = 1 (a=1 r=2 h=2 n=2; l=4
=0.00; m=588 t=588)

The input and output �les for Example 5.3, k = 8:

gr: x,y;

rel: (xx)^-1, (y^3)^-1, ((xy)^7)^-1, ((xyxY)^8)^-1;

text: ; sr;

text: ** Sims:1 (
f. 87254/128562) ...; sims:1; end;

text: ** Sims:3 (
f. 31678/32320) ...; sims:3; end;

text: ** Sims:5 (
f. 99632/178620) ...; sims:5; end;

text: ** Sims:7 (
f. 30108/31365) ...; sims:7; end;

text: ** Sims:9 (
f. 39745/39745) ...; asis:1; sims:9; end;

#--- ACE 3.001: Run Parameters ---

Group Name: G;

Group Relators: XX, YYY, YXYXYXYXYXYXYX, yXYXyXYXyXYXyXYXyXYXyXYXyXYXyXYX;

Subgroup Name: H;

Subgroup Generators: ;

#---------------------------------

** Sims:1 (
f. 87254/128562) ...

INDEX = 10752 (a=10752 r=128563 h=1 n=128563; l=27
=0.16; m=87254 t=128562)

** Sims:3 (
f. 31678/32320) ...

INDEX = 10752 (a=10752 r=8005 h=32321 n=32321; l=10
=0.13; m=31678 t=32320)

** Sims:5 (
f. 99632/178620) ...

INDEX = 10752 (a=10752 r=168547 h=1 n=168547; l=24
=0.24; m=96952 t=168546)

** Sims:7 (
f. 30108/31365) ...

INDEX = 10752 (a=10752 r=5738 h=31673 n=31673; l=8
=0.14; m=30420 t=31672)

** Sims:9 (
f. 39745/39745) ...

INDEX = 10752 (a=10752 r=1 h=39746 n=39746; l=43
=0.19; m=39745 t=39745)

The input and output �les for Example 5.4:

gr: a,b;

rel: (a^8)^-1, (b^7)^-1, ((ab)^2)^-1, ((Ab)^3)^-1;

gen: (a^2)^-1, (Ab)^-1;

asis:1;

text: ; sr;

text: ** Sims:1 (
f. 2174/2635) ...; sims:1; end;

text: ** Sims:3 (
f. 1199/1212) ...; sims:3; end;

text: ** Sims:5 (
f. 2213/2619) ...; sims:5; end;

text: ** Sims:7 (
f. 1258/1284) ...; sims:7; end;

text: ** Sims:9 (
f. 1302/1306) ...; asis:0; sims:9; end;

#--- ACE 3.001: Run Parameters ---

Group Name: G;

Group Relators: AAAAAAAA, BBBBBBB, BABA, BaBaBa;

Subgroup Name: H;

Subgroup Generators: AA, Ba;

#---------------------------------

15

** Sims:1 (
f. 2174/2635) ...

INDEX = 448 (a=448 r=2636 h=1 n=2636; l=4
=0.00; m=2174 t=2635)

** Sims:3 (
f. 1199/1212) ...

INDEX = 448 (a=448 r=576 h=1213 n=1213; l=3
=0.01; m=1199 t=1212)

** Sims:5 (
f. 2213/2619) ...

INDEX = 448 (a=448 r=2620 h=1 n=2620; l=4
=0.00; m=2213 t=2619)

** Sims:7 (
f. 1258/1284) ...

INDEX = 448 (a=448 r=612 h=1285 n=1285; l=3
=0.01; m=1258 t=1284)

** Sims:9 (
f. 1302/1306) ...

INDEX = 448 (a=448 r=1 h=1307 n=1307; l=5
=0.00; m=1302 t=1306)

A.3 Row �lling

If all de�nitions are made by applying
osets to relators, then the
oset table
an

ontain holes, either be
ause the form of the relators `hides' one of the generators from

one of the
osets, or be
ause one of the generators is not present in the relators. The

row and mend parameters
an be used to deal with these sorts of situations. Consider

the following examples, drawn from [17℄; see the input �le ex002.in. Note that,

although the row parameter is spe
i�
ally intended to prevent the table
ontaining

holes, the mend parameter a
tually yields better enumeration statisti
s. Note also the

use of the asis parameter to
ontrol whether or not the presentation is redu
ed.

enum:infinite
y
li
 group; gr:xy; rel:yxyxY;

subgr:self (index 1); gen:x;

asis:1; mess:1000000; pure r; end;

#--- ACE 3.001: Run Parameters ---

Group Name: infinite
y
li
 group;

Group Generators: xy;

Group Relators: yxyxY;

Subgroup Name: self (index 1);

Subgroup Generators: x;

Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;

As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;

C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

#---------------------------------

SG: a=1 r=1 h=1 n=2; l=1
=+0.00; m=1 t=1

OVERFLOW (a=249992 r=249996 h=1 n=249999; l=253
=0.19; m=249992 t=249998)

pr:-1,12;

CO: a=249992 r=249990 h=1 n=249993;
=+0.05

oset | x X y Y order rep've

-------+---

1 | 1 1 2 0

2 | 4 3 5 1 0 y

3 | 2 5 6 4 0 yX

4 | 0 2 3 0 0 yx

5 | 3 6 7 2 0 yy

6 | 5 7 8 3 0 yXy

7 | 6 8 9 5 0 yyy

8 | 7 9 10 6 0 yXyy

9 | 8 10 11 7 0 yyyy

10 | 9 11 12 8 0 yXyyy

11 | 10 12 13 9 0 yyyyy

12 | 11 13 14 10 0 yXyyyy

16

mess:0;

pure r; row:1; end;

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=12 t=17)

pure r; mend:1; end;

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=5 t=6)

mess:1000000;

asis:0; pure r; end;

#--- ACE 3.001: Run Parameters ---

Group Name: infinite
y
li
 group;

Group Generators: xy;

Group Relators: xyx;

Subgroup Name: self (index 1);

Subgroup Generators: x;

Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;

As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;

C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

#---------------------------------

SG: a=1 r=1 h=1 n=2; l=1
=+0.00; m=1 t=1

UH: a=1 r=2 h=2 n=2; l=3
=+0.00; m=1 t=1

INDEX = 1 (a=1 r=2 h=2 n=2; l=3
=0.00; m=1 t=1)

enum:C_3; rel:x^3yxyX^3,y^3xyxY^3; subgr:trivial (index 3); gen:;

asis:1; pure r; end;

#--- ACE 3.001: Run Parameters ---

Group Name: C_3;

Group Generators: xy;

Group Relators: xxxyxyXXX, yyyxyxYYY;

Subgroup Name: trivial (index 3);

Subgroup Generators: ;

Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;

As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;

C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

#---------------------------------

OVERFLOW (a=181146 r=38770 h=1 n=249999; l=32
=0.12; m=181146 t=249998)

pr:-1,16;

CO: a=181146 r=28074 h=1 n=181147;
=+0.03

oset | x X y Y order rep've

-------+---

1 | 2 0 7 0

2 | 3 1 15 0 0 x

3 | 4 2 23 0 0 xx

4 | 12 3 6 5 0 xxx

5 | 35 6 4 0 0 xxxY

6 | 5 0 31 4 0 xxxy

7 | 47 0 8 1 0 y

8 | 55 0 9 7 0 yy

9 | 11 10 52 8 0 yyy

10 | 9 0 72 11 0 yyyX

11 | 63 9 10 0 0 yyyx

12 | 20 4 14 13 0 xxxx

13 | 89 14 12 0 0 xxxxY

14 | 13 0 85 12 0 xxxxy

15 | 101 0 16 2 0 xy

16 | 109 0 17 15 0 xyy

17

mess:0;

pure r; row:1; end;

INDEX = 3 (a=3 r=468 h=1 n=468; l=3
=0.00; m=343 t=467)

pure r; mend:1; end;

INDEX = 3 (a=3 r=29 h=29 n=29; l=3
=0.00; m=21 t=28)

mess:1000000;

asis:0; pure r; end;

#--- ACE 3.001: Run Parameters ---

Group Name: C_3;

Group Generators: xy;

Group Relators: yxy, xyx;

Subgroup Name: trivial (index 3);

Subgroup Generators: ;

Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;

As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;

C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

#---------------------------------

UH: a=3 r=6 h=6 n=6; l=3
=+0.00; m=5 t=5

INDEX = 3 (a=3 r=6 h=6 n=6; l=3
=0.01; m=5 t=5)

A.4 Equivalent presentations

TBA: F (2; 7), using rep & aep ...

A.5 Dedu
tion queues

TBA: ... (see test009)

A.6 Large enumerations

Suppose that the presentation given is su
h that the �nal
oset table ex
eeds the

4Gbyte limit imposed by 32-bit ma
hines; e.g., an index of 250 � 10

6

, with a 5-

olumn table and 4 byte integers. We are justi�ed in regarding su
h an enumeration

as `big', sin
e it will require more than 4Gbyte of storage no matter how eÆ
iently it

is performed. Of
ourse, even trivial enumerations may ex
eed this limit if they are

very pathologi
al (see, e.g., [7℄). However, we have no (easy) way of knowing whether

or not su
h enumerations
an be done within the 4Gbyte limit, so we are hesitant to

lassify them as big. ACE is 64-bit `aware', and
an use more than 4Gbyte of memory

if it is available. Note however that the number of
osets (i.e., the number of rows in

the
oset table) is still limited by the size of a signed int. So the maximum size of a

table is 2

31

� n
osets, where n is probably 3; one sin
e we
an't a
tually represent

+2147483648, one sin
e
oset #0 is not used, and one sin
e we need to
ount one

past the top of the table.

Some trivial group enumerations involving more than 1G total
osets and 4Gbyte

of memory were reported in [7℄. However, the �rst big enumeration, in the above

sense, done by ACE was the Thomson simple group. This group has order TBA, and

ontains TBA as an index TBA subgroup. TBA: ...

18

A.7 Looping

TBA: ...

A.8 Use of st

The following shows how we
an approximate one of the even-numbered Sims strate-

gies by repeatedly pausing ACE, standardising and
ontinuing. Below, we use restri
-

tive values of max to pause ACE, starting with max:14 and stepping max by 50 until

the enumeration
ompletes. It is easy to
reate the loop ne
essary to do this within

some higher level programming language su
h as GAP that
an interfa
e with ACE.

Re
all, from Se
tion A.2, that de�nitions are made from the front in Sims' routines

and from the rear in ACE; so we work with the formal inverses of the relators and sub-

group generators from [15℄. As it happens we are able to generate t and m statisti
s

for Example 5.2 with strategy 4 that exa
tly mat
h those of Sims [15, Table 5.5.3℄.

The example that does so is ex007.in. Here now is that input �le and its output.

gr: r,s,t;

rel: (r^tRR)^-1, (s^rSS)^-1, (t^sTT)^-1;

text: ; sr;

text: ** Sims:4 (
f. 393/393) ...;

sims:3;

max:14;

Start;

standard; max:64; Continue; standard; max:114; Continue;

standard; max:164; Continue; standard; max:214; Continue;

standard; max:264; Continue; standard; max:314; Continue;

standard; max:364; Continue; standard; max:414; Continue;

#--- ACE 3.001: Run Parameters ---

Group Name: G;

Group Relators: rrTRt, ssRSr, ttSTs;

Subgroup Name: H;

Subgroup Generators: ;

#---------------------------------

** Sims:4 (
f. 393/393) ...

OVERFLOW (a=14 r=2 h=2 n=15; l=3
=0.00; m=14 t=14)

o/ST: a=14 r=2 h=2 n=15;
=+0.00

OVERFLOW (a=64 r=8 h=8 n=65; l=2
=0.00; m=64 t=64)

o/ST: a=64 r=8 h=8 n=65;
=+0.00

OVERFLOW (a=114 r=15 h=15 n=115; l=2
=0.00; m=114 t=114)

o/ST: a=114 r=15 h=15 n=115;
=+0.00

OVERFLOW (a=164 r=23 h=23 n=165; l=2
=0.00; m=164 t=164)

o/ST: a=164 r=23 h=23 n=165;
=+0.00

OVERFLOW (a=214 r=31 h=31 n=215; l=2
=0.00; m=214 t=214)

o/ST: a=214 r=31 h=31 n=215;
=+0.00

OVERFLOW (a=264 r=39 h=39 n=265; l=2
=0.00; m=264 t=264)

o/ST: a=264 r=39 h=39 n=265;
=+0.00

OVERFLOW (a=314 r=47 h=47 n=315; l=2
=0.00; m=314 t=314)

o/ST: a=314 r=47 h=47 n=315;
=+0.00

OVERFLOW (a=364 r=56 h=56 n=365; l=2
=0.00; m=364 t=364)

o/ST: a=364 r=56 h=56 n=365;
=+0.00

INDEX = 1 (a=1 r=2 h=2 n=2; l=2
=0.00; m=393 t=393)

19

A.9 Use of
y, n
,

 and r

TBA: ...

20

Appendix B

Command summary

This appendix gives details of all the
ommands available when using the intera
tive

interfa
e. The se
tion headings mat
h the help s
reen produ
ed by the help
om-

mand, and are in the same order. Alternative forms of a
ommand are separated by a

/, while any optional part of a
ommand is denoted by [...℄. Case is not signi�
ant

in
ommand names, but that part of a
ommand a
tually present must be
orre
t,

modulo white spa
e. Appendix A
ontains many examples of how to
orre
tly drive

ACE.

Parameters to a
ommand are supplied after a
olon (:). Ea
h
ommand is terminated

by a newline or a semi
olon (;), ex
ept in some
ases where the argument may be a list

of words, in whi
h
ase newlines are ignored and a semi
olon is the only terminator.

(E.g., the add gen, add rel, rel & gen
ommands.) In many
ases the parameters

are optional, and entering the
ommand without an argument prints the parameter's

urrent value. If the no-argument form has a spe
ial meaning, this is noted in its

entry below. Where there is no danger of
onfusion, the : and/or the ;
an usually

be dispensed with. The allowed parameter values are listed after a
olon (:) either

expli
itly (e.g. 1..7 means an integer in the range 1 to 7 in
lusive) or is one of the

following:

<int> an integer;

<int list> a
omma-separated list of <int>;

<string> an alphanumeri
 string (blanks allowed, but no semi
olons);

<filename> a <string> (but must be a valid UNIX �lename);

<letter list> a list of lower-
ase letters, optionally separated by blanks or
ommas;

<word list> a
omma-separated list of <word>s;

<relator list> a
omma-separated list of <word>s or <relation>s;

where a <relation> is an equals (=) separated list of <word>s, a (somewhat sket
hy)

BNF for <word> is given by

<word> = <fa
tor> { "*" | "/" <fa
tor> }

<fa
tor> = <element> [["^"℄ <integer> | "^" <element> ℄

<element> = <generator> ["'"℄

| "(" <word> { "," <word> } ")" ["'"℄

| "[" <word> { "," <word> } "℄" ["'"℄

and a <generator> is a letter or an integer (see B.27). A verbal des
ription of a

<word list> is given in B.28.

21

Note: Some of the
ommand names or synonyms might strike you as pe
uliar. These

names were not
hosen by me, but were di
tated by the need for
ompatibility with

previous
oset enumerators (ie, t
 &
e/a
e).

B.1 add gen[erators℄ / sg : <word list> ;

Adds the words in the list to any subgroup generators already present. The enumer-

ation must be (re)started or redone, it
annot be
ontinued.

B.2 add rel[ators℄ / rl : <relation list> ;

Adds the words in the list to any relators already present. The enumeration must be

(re)started or redone, it
annot be
ontinued.

B.3 aep : 1..7 ;

The aep (all equivalent presentations) option runs an enumeration for ea
h possible

ombination of relator ordering, relator rotations, and relator inversions. As dis
ussed

by Cannon, Dimino, Havas & Watson [3℄ and Havas & Ramsay [8℄ su
h equivalent

presentations
an yield large variations in the number of
osets required in an enu-

meration. For this
ommand, we are interested in this variation.

The aep option �rst performs a `priming run' using the parameters as they stand.

In parti
ular, the asis & mess parameters are honoured. It then turns asis on

and mess o�, and generates and tests the requested equivalent presentations. The

maximum and minimum values attained by max
os & tot
os are tra
ked, and ea
h

time a new `re
ord' is found the relators used and the summary result line is printed.

At the end, some additional status information is printed: the number of runs whi
h

yielded a �nite index; the total number of runs (ex
luding the priming run); and the

range of values observed for max
os & tot
os. asis & mess are now restored to their

original values, and the system is ready for further
ommands.

The mandatory argument is
onsidered as a binary number. Its three bits are treated

as
ags, and
ontrol relator rotations (the 2

0

bit), relator inversions (the 2

1

bit)

and relator orderings (the 2

2

bit); \1" means `a
tive' and \0" means `ina
tive'. The

order in whi
h the equivalent presentations are generated and tested has no parti
ular

signi�
an
e, but note that the presentation as given (after the initial priming run) is

the last presentation to be generated and tested, so that the group's relators are left

`un
hanged' by running the aep option.

As an example (drawn from the dis
ussion in [8℄)
onsider the index 448 enumeration

of (8; 7 j 2; 3)=ha

2

; Abi, where

(8; 7 j 2; 3) = ha; b j a

8

= b

7

= (ab)

2

= (Ab)

3

= 1i:

There are 4! = 24 relator orderings and 2

4

= 16
ombinations of relator or inverted

relator. Exponents are taken into a

ount when rotating relators, so the relators given

22

give rise to 1, 1, 2 & 2 rotations respe
tively, for a total of 1:1:2:2 = 4
ombinations. So

the
ommand aep:7 would generate and test 24:16:4 = 1536 equivalent presentations,

while aep:3 would generate and test 16:4 = 64 equivalent presentations.

Notes: There is no way to stop the aep option before it has
ompleted, other than

killing the task. So do a reality
he
k beforehand on the size of the sear
h spa
e and

the time for ea
h enumeration. If you are interested in �nding a `good' enumeration,

it
an be very helpful, in terms of running time, to put a tight limit on the number

of
osets via the max parameter. (You may also have to set
om:100 to prevent time-

wasting attempts to re
over spa
e via
ompa
tion.) This maximises throughput by

ausing the `bad' enumerations, whi
h are in the majority, to over
ow qui
kly and

abort. If you wish to explore a very large sear
h-spa
e,
onsider �ring up many
opies

of ACE, and starting ea
h with a `random' equivalent presentation. Alternatively, you

ould use the rep
ommand.

B.4 ai / alter i[nput℄ : [<filename>℄ ;

By default,
ommands to ACE are read from the standard input �le (i.e., the `key-

board', stdin). The ai
ommand
loses the
urrent input �le (unless it's stdin),

and opens <filename> as the sour
e of
ommands. If <filename>
an't be opened,

input reverts to stdin.

Notes: If you swit
h to taking input from a(nother) �le, remember to swit
h ba
k

to the previous �le before the end of the
urrent �le. If you don't, the EOF in the

urrent �le will
ause ACE to terminate.

B.5 ao / alter o[utput℄ : [<filename>℄ ;

By default, output from ACE is sent to the standard output �le (i.e., the `terminal',

stdout). The ao
ommand
loses the
urrent output �le, and opens <filename> for

all future output. If <filename>
an't be opened, output reverts to stdout.

B.6 as[is℄ : [0/1℄ ;

By default, ACE freely &
y
li
ally redu
es the relators, freely redu
es the subgroup

generators, and sorts relators & generators in length-in
reasing order (a stable inser-

tion sort is used). If you do not want this, you
an swit
h it o� by asis:1.

Notes: As well as allowing you to pro
ess the presentation in the form given, this

is useful for for
ing de�nitions to be made in a prespe
i�ed order, by introdu
ing

dummy (i.e., freely trivial) subgroup generators. Note also that the exa
t form of the

presentation
an have a signi�
ant impa
t on the enumeration statisti
s; it is not the

ase that the default option always yields the best enumeration.

Guru Notes: When asis:0, a (redu
ed) relator of the form aa or AA
auses that

generator to be treated as an involution. In the relators and subgroup generators, the

inverses of involutionary generators are automati
ally repla
ed with the generator.

23

When asis:1, only relators of the form a^2
ause the generator to be treated as an

involution. The forms aa & a^2 are preserved in any printout, so that you
an tra
k

ACE's behaviour.

B.7 beg[in℄ / end / start ;

Start an enumeration. Any existing information in the table is
leared, and the

enumeration starts from
oset #1 (i.e., the subgroup).

B.8 bye / exit / q[uit℄ ;

This exits ACE ni
ely, printing the date and the time. An EOF (end-of-�le; i.e., ^d)

has the same e�e
t, so proper termination o

urs if ACE is taking its input from a

s
ript �le.

B.9

 /
oset
oin
[iden
e℄ : <int> ;

Print out the representative of
oset #<int>, and add it to the subgroup generators;

i.e., equates this
oset with
oset #1, the subgroup.

B.10
[fa
tor℄ /
t[fa
tor℄ : [<int>℄ ;

The value of this parameter sets the `blo
king fa
tor' for C-style de�nitions; i.e., the

number of
oset de�nitions made by �lling the next empty
oset table position during

ea
h pass through the enumerator's main loop. The absolute value of <int> is the

value used. The enumeration style is sele
ted by the values of the
t & rt parameters;

see Se
tion 3.1.

B.11
he
k / redo ;

An extant enumeration is redone, using the
urrent parameters. Any existing infor-

mation in the table is retained, and the enumeration is restarted from
oset #1 (i.e.,

the subgroup).

Notes: This option is really intended for the
ase where additional relators and/or

subgroup generators have been introdu
ed. The
urrent table, whi
h may be in
om-

plete or exhibit a �nite index, is still `valid'. However, the additional data may allow

the enumeration to
omplete, or
ause a
ollapse to a smaller index.

B.12
om[pa
tion℄ : [0..100℄ ;

The key word
om
ontrols
ompa
tion of the
oset table during an enumeration.

Compa
tion re
overs the spa
e allo
ated to
osets whi
h are
agged as dead (i.e.,

whi
h were found to be
oin
ident with lower-numbered
osets). It results in a ta-

ble where all the a
tive
osets are numbered
ontiguously from #1, and with the

remainder of the table available for new
osets.

24

The
oset table is
ompa
ted when a
oset de�nition is required, there is no spa
e

for a new
oset available, and provided that the given per
entage of the
oset table

ontains dead
osets. For example,
om:20 means
ompa
tion will o

ur only if 20%

or more of the
osets in the table are dead. The argument
an be any integer in the

range 0{100, and the default value is 10 or 100; see Se
tion 3.2. An argument of 100

means that
ompa
tion is never performed, while an argument of 0 means always

ompa
t, no matter how few dead
osets there are (provided there is at least one, of

ourse).

Compa
tion may be performed multiple times during an enumeration, and the table

that results from an enumeration may or may not be
ompa
t, depending on whether

or not there have been any
oin
iden
es sin
e the last
ompa
tion (or from the start

of the enumeration, if there have been no
ompa
tions). If messaging is enabled (i.e.,

mess 6= 0), then a progress message (labelled CO) is printed ea
h time the
ompa
tion

routine is a
tually
alled (as opposed to ea
h time it is potentially
alled).

Notes: In some strategies (e.g., HLT) a lookahead phase may be run before
om-

pa
tion is attempted. In other strategies (e.g., sims:3)
ompa
tion may be performed

while there are outstanding dedu
tions; sin
e dedu
tions are dis
arded during
om-

pa
tion, a �nal RA phase will (automati
ally) be performed. Compa
ting a table

`destroys' information and history, in the sense that the table entries for any dead

osets are deleted, along with their
oin
iden
e list data. At Level 2, it is not possi-

ble to a

ess the `data' in dead
osets; in fa
t, most options that require table data

ompa
t the table automati
ally before they run.

B.13
ont[inue℄ ;

Continue the
urrent enumeration, building upon the existing table. If a previous

run stopped without produ
ing a �nite index you
an, in prin
iple,
hange any of the

parameters and
ontinue on. Of
ourse, if you make any
hanges whi
h invalidate

the
urrent table, you won't be allowed to
ontinue, although you may be allowed to

redo.

B.14
y[
les℄ ;

Print out the table in
y
les; i.e., the permutation representation.

B.15 ded mo[de℄ / dmod[e℄ : [0..4℄ ;

A
ompleted table is only valid if every table entry has been tested in all essentially

di�erent positions in all relators. This testing
an either be done dire
tly (Fels
h

strategy) or via relator s
anning (HLT strategy). If it is done dire
tly, then more

than one dedu
tion (i.e., table entry)
an be outstanding at any one time. So the

untested dedu
tions are stored in a sta
k. Normally this sta
k is fairly small but,

during a
ollapse, it
an be
ome very large.

25

This
ommand allows the user to spe
ify how dedu
tions should be handled. The

options are: 0, dis
ard dedu
tions if there is no sta
k spa
e left; 1, as 0, but purge

redundant
osets o� the top of the sta
k at every
oin
iden
e; 2, as 0, but purge all

redundant
osets from the sta
k at every
oin
iden
e; 3, dis
ard the entire sta
k if it

over
ows; 4, if the sta
k over
ows, then double the sta
k size and purge all redundant

osets from the sta
k.

The default dedu
tion mode is either 0 or 4, depending on the strategy sele
ted (see

Se
tion 3.2), and it is re
ommended that you stay with the default. If you want to

know more details, read the
ode.

Notes: If dedu
tions are dis
arded for any reason, then a �nal RA phase will be run

automati
ally at the end of the enumeration, if ne
essary, to
he
k the result.

B.16 ded si[ze℄ / dsiz[e℄ : [0/1..℄ ;

Sets the size of the (initial) allo
ation for the dedu
tion sta
k. The size is in terms

of the number of dedu
tions, with one dedu
tion taking two words (i.e., 8 bytes).

The default size, of 1000,
an be sele
ted by a 0 argument. See the dmod entry for a

(brief) dis
ussion of dedu
tion handling.

B.17 def[ault℄ ;

This sele
ts the default strategy, whi
h is based on the defaulted R/C style; see

Se
tions 3.1 & 3.2. The idea here is that we assume that the enumeration is `easy',

and start out in R style. If it turns out not to be easy, then we regard it as `hard',

and swit
h to CR style, after performing a lookahead on the entire table.

B.18 del gen[erators℄ / ds : <int list> ;

This
ommand allows subgroup generators to be deleted from the presentation. If the

generators are numbered from one in the output of, say, the sr
ommand, then the

generators listed in <int list> are deleted. <int list> must be a stri
tly in
reasing

sequen
e.

B.19 del rel[ators℄ / dr : <int list> ;

As del gen, but for the group's relators.

B.20 d[ump℄ : [0/1/2[,0/1℄℄ ;

Dumps the internal variables of ACE. The �rst argument sele
ts whi
h of the three

levels of ACE to dump, and defaults to Level 0. The se
ond argument sele
ts the

level of detail, and defaults to 0 (i.e., less detail). This option is intended for gurus;

the sour
e
ode should be
onsulted to see what the output means.

26

B.21 easy ;

If this strategy is sele
ted, we run in R style (i.e., HLT) and turn lookahead &

ompa
tion o�. For small and/or easy enumerations, this mode is likely to be the

fastest.

B.22 e
ho : [0/1℄ ;

By default, ACE does not e
ho its
ommands. If you wish it to do so, turn this

feature on with e
ho:1. This feature
an be used to render output �les from ACE

less in
omprehensible.

B.23 enum[eration℄ / group name : <string> ;

This
ommand de�nes the name by whi
h the
urrent enumeration (i.e., the group

being used) will be identi�ed in any printout. It has no e�e
t on the a
tual enumer-

ation, and defaults to G. An empty name is a

epted; to see what the
urrent name

is, use the sr
ommand.

B.24 fel[s
h℄ : [0/1℄ ;

An argument of 0 or no argument sele
ts the Fels
h strategy, while an argument

of 1 sele
ts Fels
h with all relators in the subgroup and turns gap-�lling on; see

Se
tion 3.2.

B.25 f[fa
tor℄ / fi[ll fa
tor℄ : [0/1..℄ ;

If gap-�lling is on, then gaps of length one found during dedu
tion testing are pref-

erentially �lled (see [6℄). However, this potentially violates the formal requirement

that all rows in the table are eventually �lled (and tested against the relators). The

�ll fa
tor is used to ensure that some
onstant proportion of the
oset table is always

kept �lled. Before de�ning a
oset to �ll a gap of length one, the enumerator
he
ks

whether fi times the
ompleted part of the table is at least the total size of the table

and, if not, �lls rows in standard order instead of the gap.

An argument of 0 sele
ts the default value of b5(n + 2)=4
, where n is the number

of
olumns in the table. All other things being equal, we'd expe
t the ratio of the

total size of the table to the
ompleted part of the table to be n + 1, so the default

�ll fa
tor allows a moderate amount of gap-�lling.

Notes: If fi is smaller than n, then there is generally no gap-�lling, although its

pro
essing overhead is still in
urred. A large value of fi
an
ause in�nite looping.

However, in general, a large value does work well. The e�e
ts of the various gap-

�lling strategies vary widely. It is not
lear whi
h values are good general defaults

or, indeed, whether any strategy is always `not too bad'.

27

B.26 gen[erators℄ / subgroup gen[erators℄ : <word list> ;

By default, there are no subgroup generators and the subgroup is trivial. This
om-

mand allows a list of subgroup generating words to be entered. The format is the

same as for relators, ex
ept that `genuine' relations (i.e., w

1

= w

2

) are not allowed.

B.27 gr[oup generators℄: [<letter list> / <int>℄ ;

This
ommand introdu
es the group generators, whi
h may be represented in one of

two ways. They may be presented as a list of lower-
ase letters, optionally separated

by
ommas. This is the usual method, and gives up to 26 generators. Subsequently,

upper-
ase letters
an be used, if desired, to stand for the inverse of their lower-
ase

versions; e.g., A for a^-1, B for b^-1, et
. Alternatively, a positive integer
an be used

to indi
ate the number of generators. For example, gr:5 indi
ates that there are �ve

generators, designated 1, 2, 3, 4 & 5, with inverses -1, et
.

Notes: Any use of the gr
ommand whi
h a
tually de�nes generators invalidates

any previous enumeration, and stays in e�e
t until the next gr
ommand. Any words

for the group or subgroup must be entered using the nominated generator format,

and all printout will use this format. This
ommand is not optional, nor is there any

default. A valid set of generators is the minimum information ne
essary before ACE

will attempt an enumeration.

Guru Notes: The
olumns of the
oset table are allo
ated in the same order as

the generators are listed, insofar as this is possible, given that the �rst two
olumns

must be a generator/inverse pair or a pair of involutions. (This is an implementation

issue, and is not formally ne
essary; see [1℄.) The ordering of the
olumns
an, in

some
ases, a�e
t the de�nition sequen
e of
osets and impa
t the statisti
s of an

enumeration.

B.28 group relators / rel[ators℄ : <relation list> ;

By default, or if an empty argument to this
ommand is used, the group is free.

Otherwise, this
ommand is used to introdu
e the group's de�ning relators. In order

to allow ACE to a

ept presentations from a variety of sour
es, many kinds of word

representations are allowed. ACE a

epts words in the nominated generators, allowing

* for multipli
ation, ^ for exponentiation and
onjugation, and bra
kets for pre
eden
e

spe
i�
ation. Round or square bra
kets may be used for
ommutation. (There is no

danger of
onfusion between [a,b℄/(a,b) and (ab), sin
e a , implies
ommutation,

while no
omma implies a word.) If letter generators are used, multipli
ation and

exponentiation signs (but not
onjugation signs) may be omitted; e.g., a3 is the same

as a^3 and ab is the same as a*b. Also, the exponent -1
an be abbreviated to -, so a-

stands for A. Inverses
an also be denoted by ' or /, so w

1

w

2

' = w

1

/w

2

= w

1

w

�1

2

. The

*
an also be dropped for numeri
 generators; but of
ourse two numeri
 generators,

or a numeri
 exponent and a numeri
 generator, must be separated by whitespa
e.

28

Remember that A stands for a^-1, a^b for Bab and [a,b℄ & [a,b,
℄ for ABab &

[[a,b℄,
℄.

<relation list> is a
omma-separated list of words (relators) or relations. A rela-

tion is a list of equated words, e.g. w

1

= w

2

= w

3

(equivalent to the relators w

1

w

�1

2

and w

1

w

�1

3

).

B.29 hard ;

In many `hard' enumerations, a mixture of R-style and C-style de�nitions, all tested

in all essentially di�erent positions, is appropriate. This option sele
ts su
h a mixed

strategy; see Se
tion 3.2. The idea here is that most of the work is done C-style (with

the relators in the subgroup and with gap-�lling a
tive), but that every 1000 C-style

de�nitions a further
oset is applied to all relators.

Guru Notes: The 1000/1 mix is not ne
essarily optimal, and some experimentation

may be needed to �nd an a

eptable balan
e (see, for example, [8℄). Note also that,

the longer the total length of the presentation, the more work needs to be done for

ea
h
oset appli
ation to the relators; one
oset appli
ation
an result in more than

1000 de�nitions, reversing the balan
e between R-style and C-style de�nitions.

B.30 h[elp℄ ;

Prints the help s
reen; i.e., all the headings in this appendix. Note that this list is

fairly long, so its top may disappear o� the top of the s
reen.

B.31 hlt ;

Sele
ts the standard HLT strategy; see Se
tion 3.2. Note that ACE's hlt has

lookahead on; however, the sequen
e hlt;lookahead:0; easily a
hieves an HLT

strategy with lookahead o�.

B.32 ho[le limit℄ : [-1/0..100℄ ;

An experimental feature whi
h allows an enumeration to be terminated when the

per
entage of holes in the table ex
eeds a given value. In pra
ti
e,
al
ulating this is

very expensive, and it tends to remain
onstant or de
rease throughout an enumer-

ation. So the feature doesn't seem very useful. The default value of -1 turns this

feature o�. If you want more details, read the sour
e
ode.

B.33 look[ahead℄ : [0/1..4℄ ;

Although HLT-style strategies are fast, they are lo
al, in the sense that the impli-

ations of any de�nitions/dedu
tions made while applying
osets may not be
ome

apparent until mu
h later. One way to alleviate this problem is to perform looka-

heads o

asionally; that is, to test the information in the table, looking for dedu
tions

or
oin
iden
es. ACE
an perform a lookahead when the table over
ows, before the

29

ompa
tion routine is
alled. An argument of 0 disables lookahead. Lookahead
an

be done using the entire table or only that part of the table above the
urrent
oset,

and it
an be done R-style (s
anning
osets from the beginning of relators) or C-

style (testing all de�nitions in all essentially di�erent positions). An argument of 1

does a partial table, R-style lookahead; 2 does all the table, C-style; 3 does all the

table, R-style; and 4 does a partial table, C-style. The default is either 0 or 1; see

Se
tion 3.2.

Notes: A lookahead
an do a signi�
ant amount of work, so this phase may take a

long time. The value of mend is honoured during R-style lookaheads.

B.34 loop[limit℄ : [0/1..℄ ;

The
ore enumerator is organised as a state ma
hine, with ea
h step performing an

`a
tion' (i.e., lookahead,
ompa
tion) or a blo
k of a
tions (i.e., j
tj
oset de�nitions,

jrtj
oset appli
ations). The number of passes through the main loop (i.e., steps) is

ounted, and the enumerator
an make an early return when this
ount hits the value

of loop. A value of 0, the default, turns this feature o�.

Guru Notes: You
an do lots of really neat things using this feature, but you need

some understanding of the internals of ACE to get real bene�t from it. Read the

ode!

B.35 max[
osets℄ : [0/2..℄ ;

By default, all of the workspa
e is used, if ne
essary, in building the
oset table. So

the table size is an upper bound on how many
osets
an be a
tive at any one time.

The max option allows a limit to be pla
ed on how mu
h of the physi
al table spa
e

is made available to the enumerator. Enough spa
e for at least two
osets (i.e., the

subgroup and one other) must be made available. An argument of 0 sele
ts all of the

workspa
e.

B.36 mend[elsohn℄ : [0/1℄ ;

Mendelsohn style pro
essing during relator s
anning/
losing is turned on by mend:1

and o� by mend:0. O� is the default, and here
oset appli
ations are done only at the

start (and end) of a relator. Mendelsohn on means that
oset appli
ations are done at

all
y
li
 permutations of the (base) relator. The e�e
t of the Mendelsohn parameter

is
ase-spe
i�
. It
an mean the di�eren
e between su

ess or failure, or it
an impa
t

the number of
osets required, or it
an have no e�e
t on an enumeration's statisti
s.

Notes: Pro
essing all
y
li
 permutations of the relators
an be very time-
onsuming,

espe
ially if the presentation if large. So, all other things being equal, the Mendelsohn

ag should normally be left o�. Note that Mendelsohn's paper [11℄ dis
usses tra
ing

all
y
li
 shifts of both the relators and their formal inverses. ACE only pro
ess the

relators. However, sin
e relators are s
anned from both the front and the rear, we

e�e
tively pro
ess the inverses.

30

Table B.1: Possible enumeration results

result level meaning

INDEX = x 0 �nite index of x obtained

OVERFLOW 0 out of table spa
e

SG PHASE OVERFLOW 0 out of spa
e (pro
essing subgroup generators)

ITERATION LIMIT 0 loop limit triggered

TIME LIMT 0 ti limit triggered

HOLE LIMIT 0 ho limit triggered

INCOMPLETE TABLE 0 all
osets applied, but table has holes

MEMORY PROBLEM 1 out of memory (building data stru
tures)

B.37 mess[ages℄ / mon[itor℄ : [<int>℄ ;

By default, or if the argument is 0, ACE prints out only a single line of information

giving the result of ea
h enumeration. If mess is non-zero then the presentation &

the parameters are e
hoed at the start of the run, and messages on the enumeration's

status as it progresses are also printed out. The absolute value of <int> sets the

frequen
y of the progress messages, with a negative sign turning hole monitoring on.

The initial printout of the presentation & the parameters is the same as that produ
ed

by the sr:1
ommand; see Appendix A for some examples.

The result line gives the result of the
all to the enumerator and some basi
 statisti
s

(see Appendix A for some examples). The possible results are given in Table B.1; any

result not listed represents an internal error and should be reported. The statisti
s

given are, in order: a, number of a
tive
osets; r, number of applied
osets; h, �rst

(potentially) in
omplete row; n, next
oset de�nition number; l, number of main loop

passes;
, total CPU time; m, maximum a
tive
osets; and t, total
osets de�ned.

The progress message lines
onsist of an initial tag, some �xed statisti
s, and some

variable statisti
s. The possible message tags are listed in Table B.2, along with

their meanings. The tags indi
ate the fun
tion just
ompleted by the enumerator.

The tags with a `y' in the `a
tion'
olumn represent fun
tions whi
h are aggregated

and
ounted. Every time this
ount over
ows the value of mess, a message line is

printed and the
ount is zeroed. Those tags
agged with a `y*' are only present if

the appropriate option has been in
luded in the build (see the opt
ommand). Tags

with an `n' in the `a
tion'
olumn are not
ounted, and
ause a message line to be

output every time they o

ur. They also
ause the a
tion
ount to be reset.

The �xed portion of the statisti
s
onsists of the a, r, h, n, l &
 values, as for the

result line, ex
ept that
 is the time sin
e the previous message line. If mess < 0 then

hole monitoring is a
tive, and an h statisti
 (representing the per
entage of holes in

the table) is inserted between the n & l values. The variable portion of the statisti
s

an be: the m & t values, as for the result line; d, the
urrent size of the dedu
tion

sta
k; s, d &
 (with DS tag), the new sta
k size, the non-redundant dedu
tions

retained, and the redundant dedu
tions dis
arded.

31

Table B.2: Possible progress messages

message a
tion meaning

AD y
oset #1 appli
ation de�nition (SG/RS phase)

RD y R-style de�nition

RF y row-�lling de�nition

CG y immediate gap-�lling de�nition

CC y*
oin
iden
e pro
essed

DD y* dedu
tion pro
essed

CP y preferred list gap-�lling de�nition

CD y C-style de�nition

Lx n lookahead performed (type x)

CO n table
ompa
ted

CL n
omplete lookahead (table as dedu
tion sta
k)

UH n updated
ompleted-row
ounter

RA n remaining
osets applied to relators

SG n subgroup generator phase

RS n relators in subgroup phase

DS n sta
k over
owed (
ompa
ted and doubled)

Notes: Hole monitoring is expensive, so don't turn it on unless you really need it.

If you wish to print out the presentation & the parameters, but not the progress

messages, then set mess non-zero, but very large. (You'll still get the SG, DS, et
.

messages, but not the RD, DD, et
. ones.) You
an set mess to 1, to monitor all

enumerator a
tions, but be warned that this
an yield very large output �les.

B.38 mo[de℄ ;

Prints the possible enumeration modes, as dedu
ed from the
ommand history sin
e

the last
all to the enumerator; see Se
tion 3.1.

B.39 n
 / normal[
losure℄ : [0/1℄ ;

This option takes the
urrent table (whi
h may or may not be
omplete), and tra
es

g

�1

wg and gwg

�1

for all group generators g and all subgroup generator words w. The

tra
e starts at
oset #1 (ie, the subgroup), and we note whether we get ba
k to
oset

#1 or not. If we do not, then we print out a line of output. If the argument is present

& set (ie, 1), then the o�ending
onjugate is also added to the subgroup generators;

the default is not to do so. A single pass though the (original) subgroup generators

is made, and s
ans whi
h do not
omplete are not pro
essed (ie, printed/added).

Notes: It is the user's responsibility to rerun the enumeration (& the n
 option) as

ne
essary until the situation stabilises.

B.40 no[relators in subgroup℄ : [-1/0/1..℄ ;

It is sometimes helpful to in
lude the relators in the subgroup, in the sense that they

are applied to
oset #1 at the start of an enumeration. An argument of 0 turns this

32

feature o�, and an argument of -1 in
ludes all the relators. A positive argument

in
ludes the appropriate number of relators, in order.

B.41 oo / order[option℄ : <int> ;

This option �nds a
oset with order a multiple of j<int>j modulo the subgroup,

and prints out its
oset representative. If <int> < 0, then all
osets meeting the

requirement are printed. If <int> = 0, then the orders of all
osets are printed. If

<int> > 0, then the �rst
oset meeting the requirement is printed.

B.42 opt[ions℄ ;

This
ommand dumps details of the options in
luded in the version of ACE you're

running; i.e., what
ompiler
ags were set when the exe
utable was built. A typi
al

output, illustrating the default build, is:

ACE 3.001 exe
utable built:

Fri Mar 30 14:30:59 CEST 2001

Level 0 options:

statisti
s pa
kage = on

oin
 pro
essing messages = on

dedn pro
essing messages = on

Level 1 options:

workspa
e multipliers = de
imal

Level 2 options:

host info = on

B.43 par[ameters℄ ;

An old option, whi
h did nothing. It is in
luded for ba
kward
omparability. Pre-ACE

3.001 s
ripts may
ontain this option, whi
h is quietly ignored by ACE 3.001.

B.44 path[
ompression℄ : [0/1℄ ;

To
orre
tly pro
ess multiple
oin
iden
es, a union-�nd must be performed. If both

path
ompression and weighted union are used, then this
an be done in essentially

linear time (see, e.g., [4℄). Weighted union alone, in the worst-
ase, is worse than lin-

ear, but is subquadrati
. In pra
ti
e, path
ompression is expensive, sin
e it involves

many
oset table a

esses. So, by default, path
ompression is turned o�; it
an be

turned on by path:1. It has no e�e
t on the result, but may a�e
t the running time

and the internal statisti
s.

Guru Notes: The whole question of the best way to handle large
oin
iden
e forests

is problemati
. Formally, ACE does not do a weighted union, sin
e it is
onstrained to

repla
e the higher-numbered of a
oin
ident pair. In pra
ti
e, this seems to amount

to mu
h the same thing! Turning path
ompression on
uts down the amount of data

movement during
oin
iden
e pro
essing at the expense of having to tra
e the paths

and
ompress them. In general, it does not seem to be worthwhile.

33

B.45 pd mo[de℄ / pmod[e℄ : [0/1..3℄ ;

If the argument is 0, then Fels
h style de�nitions are made using the next empty table

slot. If the argument is non-zero, then gaps of length one found during relator s
ans

in Fels
h style are preferentially �lled (subje
t to the value of fi). If the argument

is 1, they are �lled immediately, and if it is 2, the
onsequent dedu
tion is also made

immediately (of
ourse, these are also put on the dedu
tion sta
k). If the argument

is 3, then the gaps are noted in the preferred de�nition queue. Provided a live su
h

gap survives (and no
oin
iden
e o

urs, whi
h
auses the queue to be dis
arded) the

next
oset will be de�ned to �ll the oldest gap of length one. The default value is

either 0 or 3, depending on the strategy sele
ted (see Se
tion 3.2). If you want to

know more details, read the
ode.

B.46 pd si[ze℄ / psiz[e℄ : [0/2/4/8/...℄ ;

The preferred de�nition queue is implemented as a ring, dropping earliest entries. Its

size must be 2

n

, for some n > 0. An argument of 0 sele
ts the default size of 256.

Ea
h queue slot takes two words (i.e., 8 bytes), and the queue
an store up to 2

n

� 1

entries.

B.47 print det[ails℄ / sr : [0/1..5℄ ;

This
ommand prints out details of the
urrent presentation and parameters. No

argument, or an argument of 0, prints out the group & subgroup name, the group's

relators and the subgroup's generators. If the argument is 1, then the group generators

and the
urrent setting of the enumeration
ontrol parameters are also printed. (This

printout is the same as that produ
ed at the start of a run when messaging is on.)

Arguments of 2 { 5 print out the
urrent values of enum, rel, subg & gen, respe
tively.

See Appendix A for some examples.

Notes: The output is printed out in a form suitable for input, so that a re
ord of

a previous run
an be used to repli
ate the run. Note that, due to the defaulting of

some parameters and the spe
ial meaning atta
hed to some values, a little
are has

to be taken in interpreting the parameters. If you wish to exa
tly dupli
ate a run,

you should use the output of sr after the run
ompletes.

B.48 pr[int table℄ : [[-℄<int>[,<int>[,<int>℄℄℄ ;

Compa
t the table, and then print it out from the �rst to the se
ond argument, in

steps of the third argument. If the �rst argument is negative, then the orders (if

available) and representatives of the
osets are printed also. The third argument

defaults to one. The one-argument form is equivalent to the two-argument form

with a �rst argument of 1 and the argument used as the se
ond argument. The

no-argument form prints the entire table, without orders or representatives.

34

B.49 pure
[t℄ ;

Sets the strategy to basi
 C-style (
oset table based) { no
ompa
tion, no gap-�lling,

no relators in subgroup; see Se
tion 3.2.

B.50 pure r[t℄ ;

Sets the strategy to basi
 R-style (relator based) { no Mendelsohn, no
ompa
tion,

no lookahead, no row-�lling; see Se
tion 3.2.

B.51 r
 / random
oin
[iden
es℄: <int>[,<int>℄ ;

This option attempts to �nd nontrivial subgroups with index a multiple of the �rst

argument by repeatedly putting random
osets
oin
ident with
oset #1 and seeing

what happens. If the �rst argument is 0 any non-trivial �nite index is a

epted,

while if it's 1 any �nite index will do. The starting
oset table must be non-empty,

but should not be
omplete. The se
ond argument puts a limit on the number of

attempts, with a default of eight. For ea
h attempt, we repeatedly add random
oset

representatives to the subgroup and redo the enumeration. If the table be
omes too

small, the attempt is aborted, the original subgroup generators restored, the CT is

re
al
ulated, and another attempt made. If an attempt su

eeds, then the new set of

subgroup generators is retained.

Guru Notes: (i) A
oset
an have many di�erent representatives. Consider running

st before r
, to
anoni
ise the table and the representatives. This makes the reps

minimal; sadly, however, it will only do so for the �rst of a series of attempts. (ii) If

a series of attempts to �nd a subgroup fails,
onsider running the enumeration with

di�erent parameters. Although r
 is random, it is always working with the same

oset table;
hanging the parameters will give a di�erent table and hen
e a di�erent

set of reps.

B.52 re
[over℄ /
ontig[uous℄ ;

Invokes the
ompa
tion routine on the table to re
over the spa
e used by any dead

osets. A CO message line is printed if any
osets were re
overed, and a
o line if none

were. This routine is
alled automati
ally if the
y, n
, pr or st options are invoked.

B.53 rep : 1..7[,<int>℄ ;

The rep (random equivalent presentations) option
omplements the aep option. It

generates and tests some random equivalent presentations. The mandatory argument

a
ts as for aep, while the optional se
ond argument sets the number of presentations,

with a default of eight.

The routine �rst turns asis on and mess o�, and then generates and tests the re-

quested equivalent presentations. For ea
h presentation the relators used and the

35

summary result line is printed. asis & mess are now restored to their original values,

and the system is ready for further
ommands.

Notes: The relator inversions & rotations are `genuinely' random. The relator

permuting is a little bit of a kludge, with the `quality' of the permutations tending

to improve with su

essive presentations. When the rep
ommand
ompletes, the

presentation a
tive is the last one generated.

Guru Note: It might appear that negle
ting to restore the original presentation

is an error. In fa
t, it is a useful feature! Suppose that the spa
e of equivalent

presentations is too large to exhaustively test. As noted in the entry for aep, we

an start up multiple
opies of aep at random points in the sear
h-spa
e. Manually

generating `random' equivalent presentations to serve as starting-points is tedious

and error-prone. The rep option provides a simple solution; simply run rep before

aep!

B.54 restart ;

An old option, in
luded for ba
kward
ompatibility. Use the
he
k/redo option

instead. Pre-ACE 3.001 s
ripts may
ontain this option, whi
h is quietly ignored by

ACE 3.001.

B.55 r[fa
tor℄ / rt[fa
tor℄ : [<int>℄ ;

The value of this parameter sets the `blo
king fa
tor' for R-style de�nitions; i.e., the

number of
osets applied to all the relators during ea
h pass through the enumerator's

main loop. The absolute value of <int> is the value used. The enumeration style is

sele
ted by the values of the
t & rt parameters; see Se
tion 3.1.

B.56 row[filling℄ : [0/1℄ ;

When making HLT-style de�nitions, it is normal to s
an ea
h row of the table af-

ter its
oset has been applied to all relators, and make de�nitions to �ll any holes

en
ountered. Failure to do so
an
ause even simple enumerations to over
ow; see

Se
tion A.3. To turn row �lling o�, use row:0.

B.57 s
 / stabil[ising
osets℄ : <int> ;

This option takes the
urrent table (whi
h may or may not be
omplete), and looks for

(the requested number of)
osets whi
h `stabilise' the subgroup. A
oset
 stabilises

the subgroup hw

1

; : : : ; w

s

i if
w

j

=
 for all 1 � j � s. If <int> > 0, the �rst <int>

stabilising
osets found are printed. If <int> = 0, all of the stabilising
osets, plus

their representatives, are printed. If <int> < 0, the �rst j<int>j stabilising
osets,

plus their representatives, are printed.

36

B.58 sims : 1/3/5/7/9 ;

In his book [15℄, Sims dis
usses ten standard enumeration strategies. These are

e�e
tively HLT without lookahead (with or without the mend parameter, and in

R or R* style) and Fels
h, all either with or without table standardisation as the

enumeration pro
eeds. ACE does not implement table standardisation on an ongoing

basis, although tables from an in
omplete or paused enumeration
an be standardised

before the enumeration is
ontinued. The other �ve strategies are implemented, and

an be sele
ted by this
ommand. The argument mat
hes the number given in [15,

x5.5℄; see Se
tion 3.2 for the parameter settings. With
are, it is often possible to

dupli
ate the statisti
s given in [15℄; some examples are given in Se
tions A.2 and A.8.

B.59 st[andard table℄ ;

This option
ompa
ts and then standardises the table (whi
h may or may not be

omplete). That is, for a given ordering of the generators in the
olumns of the

table, it produ
es the `
anoni
' version of the
urrent table. In su
h a table, a row-

major s
an en
ounters previously unseen
osets in (
ontiguous) numeri
 order; see

Se
tion A.1 for an example.

Notes: (i) In a
anoni
 table, the
oset representatives are in length plus (
olumn

order) lexi
ographi
 order, and ea
h is the minimum in this order. Further, they are

a S
hreier set (ie, ea
h pre�x of a rep is also a rep). (ii) See Sims [15℄ for a dis
ussion

of standardising tables, and what this a
hieves.

Guru Notes: In half of the ten standard enumeration strategies of Sims [15℄, the

table is standardised repeatedly. This is expensive
omputationally, but
an result

in fewer
osets being ne
essary. The e�e
t of doing this
an be investigated in ACE

by (repeatedly) halting the enumeration, standardising the table, and
ontinuing; see

Se
tion A.8 for an example.

B.60 stat[isti
s℄ / stats ;

If the statisti
s pa
kage is
ompiled into the
ode (whi
h it is by default, see the opt

ommand), then dump the statisti
s a

umulated during the most re
ent enumera-

tion. See Se
tion A.1 for an example, and the enum.
 sour
e �le for the meaning of

the variables.

B.61 style ;

Prints the
urrent enumeration style, as dedu
ed from the
urrent Ct & Rt parameters;

see Se
tion 3.1.

B.62 subg[roup name℄ : <string> ;

This
ommand de�nes the name by whi
h the
urrent subgroup will be identi�ed in

any printout. It has no e�e
t on the a
tual enumeration, and defaults to H. An empty

name is a

epted; to see what the
urrent name is, use the sr
ommand.

37

B.63 sys[tem℄ : <string> ;

Passes <string> to a shell, via the C library routine system().

B.64 text : <string> ;

Just e
hoes <string>. This allows the output from a run driven by a s
ript to be

tarted up.

B.65 ti[me limit℄ : [-1/0/1..℄ ;

The ti
ommand puts a time limit (in se
onds) on the length of a run. An argument

of < 0 mean there is no limit (the default). If the argument is � 0 then the total

elapsed time for this
all is
he
ked at the end of ea
h pass through the enumerator's

main loop, and if it's more than the limit the run is stopped and the
urrent table

returned. Note that a limit of 0 performs exa
tly one pass through the main loop,

sin
e 0 � 0. If the enumerator is run in the
ontinue mode, this allows a form of

`single-stepping'. The time limit is approximate, in the sense that the enumerator

may run for a longer, but never a shorter, time. So, if there is, e.g., a big
ollapse

(so that the time round the loop be
omes very long), then the run may run over the

limit by a large amount.

Notes: The time limit is CPU-time, not wall-time. As in all timing under Unix,

the
lo
k's granularity (usually 10 mSe
) and the system load
an a�e
t the timing;

so the number of main loop iterations in a given time may vary. If you want more

pre
ise
ontrol, use the loop option.

B.66 tw / tra
e[word℄ : <int>,<word> ;

Tra
es <word> through the
oset table, starting at
oset <int>. Prints the �nal
oset,

if the tra
e
ompletes.

B.67 wo[rkspa
e℄ : [<int>[k/m/g℄℄ ;

By default, ACE has a physi
al table size of 10

6

entries (i.e., 4�10

6

bytes in the default

32-bit environment). The number of
osets in the table is the table size divided by

the number of
olumns. The wo
ommand allows the physi
al table size, in entries, to

be set. The argument is multiplied by 1, 10

3

, 10

6

, or 10

9

, depending as nothing, a k,

an m, or a g is appended to the argument. Although the number of
osets is limited

to 2

31

�1 (if the C <int> type is 32 bits), the table size
an ex
eed the 4GByte 32-bit

limit if a suitable ma
hine is used.

Notes: If the binary option is set (see the opt
ommand), the multipliers are 1, 2

10

,

2

20

& 2

30

respe
tively. The a
tual number of
osets in the table is entries=
olumns�2,

rounded down to the nearest integer. The �2 is to allow for possible rounding errors

and the fa
t that
oset #0 is not used.

38

B.68 # ... <newline>

Any input between a sharp sign (#) and the next newline is ignored. This allows

omments to be in
luded anywhere in
ommand s
ripts.

39

Appendix C

State ma
hine details

Figure C.1: The R/C style

31

6

Chk

> 0

�256

44

7

SG

�260 �2 �1

19

-

Redo

�1

isave F

dapp F

46

5

CL

�2 �1

To state 41

of CR style

dapp T

45

1

RD

�2

0

�1

isave T

1

-

Start

�1

isave F

dapp F

10

-

Continue

�1

isave F

dapp F

40

Figure C.2: The R* style

31

6

Chk

> 0

�256

59

5

CL

�2 �1

dapp T

20

-

Redo

�1

isave T

60

7

SG

�2 �1 �260

2

-

Start

�1

isave T

dapp T

62

3

CO

0

�1

61

9

RP

�2

0

�1

11

-

Continue

�1

isave T

41

Figure C.3: The Cr style

31

6

Chk

> 0

�256

47

5

CL

�2 �1

dapp T

21

-

Redo

�1

isave T

49

8

RS

�2

0

�1

48

7

SG

�2 �1 �260

3

-

Start

�1

isave T

dapp T

52

1

RD

�2

0

�1

To state 35

of C style

51

3

CO

0

�1

50

4

CD

�2

0

�1

12

-

Continue

�1

isave T

42

Figure C.4: The C style

31

6

Chk

> 0

�256

32

5

CL

�2 �1

dapp T

24

-

Redo

�1

isave T

34

8

RS

�2

0

�1

33

7

SG

�2 �1 �260

6

-

Start

�1

isave T

dapp T

36

3

CO

0

�1

35

4

CD

�2

0

�1

15

-

Continue

�1

isave T

43

Figure C.5: The R
 style

31

6

Chk

> 0

�256

53

7

SG

�260 �2 �1

25

-

Redo

�1

isave F

dapp F

58

4

CD

�2

0

�1

dapp F

To state 30

of R style

dapp F

To state 28

of R style

57

3

CO

0

�1

55

5

CL

�2 �1

dapp T

54

1

RD

�2

0

�1

7

-

Start

�1

isave F

dapp F

56

5

CL

�2 �1

dapp T

16

-

Continue

�1

isave F

dapp F

44

Figure C.6: The R style

31

6

Chk

> 0

�256

37

7

SG

�260 �2 �1

26

-

Redo

�1

isave F

dapp F

30

3

CO

0

�1

29

2

Lx

�2 �1

28

1

RD

�2

0

�1

8

-

Start

�1

isave F

dapp F

17

-

Continue

�1

isave F

dapp F

45

Figure C.7: The CR style

31

6

Chk

> 0

�256

38

5

CL

�2 �1

dapp T

27

-

Redo

�1

isave T

40

8

RS

�2

0

�1

39

7

SG

�2 �1 �260

9

-

Start

�1

isave T

dapp T

43

1

RD

�2

0

�1

42

3

CO

0

�1

41

4

CD

�2

0

�1

18

-

Continue

�1

isave T

46

Appendix D

Abbreviations

This appendix lists: the abbreviations and a
ronyms we use; the te
hni
al terms we

use; the various terms used in des
ribing ACE, and in expli
ating its internals; any

terms spe
i�
 to PACE or PEACE whi
h are used. Note that this list in
ludes both

terms used in this manual and terms
ommonly used in the sour
e
ode.

ACE advan
ed
oset enumerator

aka also known as

alive an a
tive (non-pending/dead)
oset

ANSI Ameri
an national standards institute

arg argument

asap as soon as possible

ave average

barrier syn
 point at whi
h all threads wait until all are ready

beg(in) starts an enumeration ab initio

bn between

BSD Berkeley standard distribution

C the best programming language, ever

CC
oin

oset pro
essed (enumeration message/phase)

CD
oset table de�nition (enumeration message/phase)

ds
omplete de�nition sequen
e

he
k synonym for redo

Chk result
he
king (enumeration message/phase)

CL
oset table based lookahead (enumeration message/phase)

md
ommand

CO table
ompa
tion (enumeration message/phase)

oin

oin
iden
e. Primary
oin
 { o

urs during defns/s
ans.

Se
ondary
oin
 {
onsequen
e of a primary one

ol
olumn

on
urrent potentially at the same time, or virtual parallelism

ont(inue)
ontinues the
urrent enumeration

os
oset

C(PU) aggregated CPU time for an enumeration

CPU
entral pro
essor unit

CRG the PACE style {
oset table, relator tables & gap �lling

CT
oset table

47

DD serial dedu
tion sta
k pro
essing (enumeration message/phase)

dead a fully pro
essed
oin

oset

dedn dedu
tion. Formally { a dedu
tion made during relator s
anning.

Loosely { any (new/altered) table entry whi
h is sta
ked

defn de�nition

defn seq de�nition sequen
e

DG serial gap-�lling (enumeration message/phase)

DOSTK dedn pro
essing ma
ro,
alls appropriate handler

DS de�nition sequen
e

dtime total elapsed time in DOSTK ma
ro (part of stats)

DTT spe
ial debug/test/tra
e
ode

edp essentially di�erent position(s)

eg exempli gratio, for example

elt element

end synonym for begin (don't blame me!)

EOF end-of-�le

EOL end-of-line

Err error (enumeration message/phase)

et
 et
etera

F FALSE

G the group

gen generator, either of grp or of subgrp

GNU GNU's not Unix { quality `freeware'

g(p) growth fun
tion of T with p

grp group

H the subgroup

HD heuristi
 de�nition (enumeration message/phase)

ie id est, that is

in
(l) in
lude/in
luding

in
(r) in
rease/in
reasing

inv inverse

invol(n) involution

I/O input/output

IP, i/p input

item PWs are sequen
es of items

KISS keep it simple, stupid

(kn)h
oset table rows <knh are guaranteed to be
omplete

(kn)r
oset table rows <knr are guaranteed to s
an at all relators

LC lower-
ase

len length

lst list

LWP lightweight pro
ess { sorta like a thread, but not quite

48

m, M MaxCos, the maximum number of
osets a
tive

mode start,
ontinue or redo an enumeration

mutex POSIX mutual ex
lusion lo
k

n the number of slaves/threads (i.e., the argument of beg)

n/a not appli
able

n(extdf) number of next
oset to be de�ned

npro
 global variable
ontaining value of n

NW non-whitespa
e (ie, not spa
e, tab, or (maybe) newline

OP, o/p output

OS operating system

p the dedn sta
k bat
hing fa
tor (i.e., the argument of pf)

PACE parallel ACE

Par the parallelisable portion of the running time

para paragraph

parallel a
tually at the same time, or real parallelism

parallel a PACE run with n 6= 0

parentheses the \(" & \)"
hara
ters

PC proof
erti�
ate

pdl preferred de�nition list

PEACE proof extra
tion after
oset enumeration

pending a
oset on the
oin
 queue but not yet pro
essed

pfa
tor global variable
ontaining value of p

pthread POSIX thread

PD parallel dedu
tion sta
k pro
essing (enumeration message/phase)

PG parallel gap-�lling (enumeration message/phase)

pos(n) position

POSIX portable operating system interfa
e

PPP paranoia prevent problems (ie, belts'n'bra
es)

pri primary

PT proof table

ptr pointer

PW proof word

RD relator table de�nition (enumeration message/phase)

RA relator appli
ation
he
k (enumeration message/phase)

redo redo the
urrent enumeration (keeping the table)

red(n) redu
tion

redundant a dead
oset

rel relator and/or relation

rep the (
urrent) representative of a
oin
ident
oset

RS relators in subgroup (enumeration message/phase)

se
 se
ondary

semaphore syn
 primitive allowing signalling between threads

49

seq sequen
e

Ser the serial portion of the running time

serial a PACE run using beg:0, or an ACE run

SG subgroup generator (enumeration message/phase)

SMP shared memory multipro
essor and/or symmetri
 multipro
essing

spin-lo
k syn
 via sitting in tight loop until a
ondition is met

square the \[" & \℄"
hara
ters

bra
kets

sr
 sour
e

stats statisti
s (pa
kage)

start synonym for begin

strategy the overall enumeration method (ie, HLT, Fels
h, Sims:n, et
)

style whi
h of the state ma
hines is a
tive (ie, R, C, CR, et
)

subgrp subgroup

Syn
 the master-slave syn
hronisation overhead time

syn
 syn
hronous, syn
hronisation

t, T TotCos, the total number of
osets de�ned

T TRUE

TAB tabulate
hara
ter

TBA to be announ
ed/advised

thread an independent exe
ution sequen
e within a pro
ess

tuple 4-element re
ord of signi�
ant s
an, see the Dlelt type (in al0.h)

UC upper-
ase

UH update hole
ount
he
k (enumeration message/phase)

vs versus

W(all) elapsed, or wall, time for an enumeration

wrd word

WS white-spa
e; ie, blanks, tabs, & newlines (maybe)

50

Referen
es

[1℄ M.J. Beetham. Spa
e saving in
oset enumeration. In Mi
hael D. Atkinson,

editor, Computational Group Theory, pages 19{25. A
ademi
 Press, 1984.

[2℄ W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: the user

language. Journal of Symboli
 Computation, 24:235{265, 1997.

[3℄ John J. Cannon, Lu
ien A. Dimino, George Havas, and Jane M. Watson. Imple-

mentation and analysis of the Todd-Coxeter algorithm. Mathemati
s of Compu-

tation, 27:463{490, 1973.

[4℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion

to Algorithms. The MIT Press, 1990.

[5℄ L.E. Di
kson. Linear Groups, with an exposition of the Galois �eld theory. B.G.

Teubner, Leipzig, 1901.

[6℄ George Havas. Coset enumeration strategies. In Stephen M. Watt, editor, IS-

SAC'91 (Pro
eedings of the 1991 International Symposium on Symboli
 and Al-

gebrai
 Computation), pages 191{199. ACM Press, 1991.

[7℄ George Havas and Colin Ramsay. Proving a group trivial made easy: a
ase

study in
oset enumeration. Bulletin of the Australian Mathemati
al So
iety,

62:105{118, 2000.

[8℄ George Havas and Colin Ramsay. Experiments in
oset enumeration. In W.M.

Kantor and A. Seress, editors, Groups and Computation III, number 8 in Ohio

State University Mathemati
al Resear
h Institute Publi
ations, pages 183{192.

Walter de Gruyter, 2001.

[9℄ J. Lee
h. Coset enumeration on digital
omputers. Pro
eedings of the Cambridge

Philosophi
al So
iety, 59:257{267, 1963.

[10℄ John Lee
h. Coset enumeration. In Mi
hael D. Atkinson, editor, Computational

Group Theory, pages 3{18. A
ademi
 Press, 1984.

[11℄ N.S. Mendelsohn. An algorithmi
 solution for a word problem in group theory.

Canadian Journal of Mathemati
s, 16:509{516, 1964. Corrigendum: Ibid. 17:505,

1965.

[12℄ E.H. Moore. Con
erning the abstra
t groups of order k! and

1

2

k! holohedri
ally

isomorphi
 with the symmetri
 and the alternating substitution-groups on k

letters. Pro
eedings of the London Mathemati
al So
iety (1), 28:357{366, 1897.

[13℄ J. Neub�user. An elementary introdu
tion to
oset-table methods in
ompu-

tational group theory. In Groups { St. Andrews 1981, London Mathemati
al

So
iety Le
ture Note Series 71, pages 1{45. Cambridge University Press, 1982.

[14℄ M. S
h�onert et al. GAP { Groups, Algorithms and Programming. Lehrstuhl D

f�ur Mathematik, Rheinis
h-Westf�alis
he Te
hnis
he Ho
hs
hule, Aa
hen, 1995.

51

[15℄ Charles C. Sims. Computation with �nitely presented groups. Cambridge Uni-

versity Press, 1994.

[16℄ J.A. Todd and H.S.M. Coxeter. A pra
ti
al method for enumerating
osets of

�nite abstra
t groups. Pro
eedings of the Edinburgh Mathemati
al So
iety, 5:26{

34, 1936.

[17℄ J.N. Ward. A note on the Todd-Coxeter algorithm. In R.A. Bry
e, J. Cossey, and

M.F. Newman, editors, Group Theory (Canberra, 1975), number 573 in Le
ture

Notes in Mathemati
s, pages 126{129. Springer-Verlag, 1977.

52

