Overall, the default options are the best. However, sometimes one of these is dramatically better (or worse!). For the examples here, one doesn't notice much difference.
RadicalCodim1 chooses an alternate, often much faster, sometimes much slower, algorithm for computing the radical of ideals. This will often produce a different presentation for the integral closure. Radical chooses yet another such algorithm.
AllCodimensions tells the algorithm to bypass the computation of the S2-ification, but in each iteration of the algorithm, use the radical of the extended Jacobian ideal from the previous step, instead of using only the codimension 1 components of that. This is useful when for some reason the S2-ification is hard to compute, or if the probabilistic algorithm for computing it fails. In general though, this option slows down the computation for many examples.
StartWithOneMinor tells the algorithm to not compute the entire Jacobian ideal, just find one element in it. This is often a bad choice, unless the ideal is large enough that one can't compute the Jacobian ideal. In the future, we plan on using the FastMinors package to compute part of the Jacobian ideal.
SimplifyFractions changes the fractions to hopefully be simpler. Sometimes it succeeds, yet sometimes it makes the fractions worse. This is because of the manner in which fraction fields work. We are hoping that in the future, less drastic change of fractions will happen by default.
Vasconocelos tells the routine to instead of computing Hom(J,J), to instead compute Hom(J^-1, J^-1). This is usually a more time consuming computation, but it does potentially get to the answer in a smaller number of steps.
i1 : S = QQ[x,y,z]
o1 = S
o1 : PolynomialRing
|
i2 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o2 = ideal(x - y z - z - z )
o2 : Ideal of S
|
i3 : R = S/f
o3 = R
o3 : QuotientRing
|
i4 : time R' = integralClosure R
-- used 9.80083 seconds
o4 = R'
o4 : QuotientRing
|
i5 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o5 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i6 : icFractions R
3 2 2 4
x y z + z + z
o6 = {--, -------------, x, y, z}
z x
o6 : List
|
i7 : S = QQ[x,y,z]
o7 = S
o7 : PolynomialRing
|
i8 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o8 = ideal(x - y z - z - z )
o8 : Ideal of S
|
i9 : R = S/f
o9 = R
o9 : QuotientRing
|
i10 : time R' = integralClosure(R, Strategy => Radical)
-- used 10.118 seconds
o10 = R'
o10 : QuotientRing
|
i11 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o11 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i12 : icFractions R
3 2 2 4
x y z + z + z
o12 = {--, -------------, x, y, z}
z x
o12 : List
|
i13 : S = QQ[x,y,z]
o13 = S
o13 : PolynomialRing
|
i14 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o14 = ideal(x - y z - z - z )
o14 : Ideal of S
|
i15 : R = S/f
o15 = R
o15 : QuotientRing
|
i16 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 9.71724 seconds
o16 = R'
o16 : QuotientRing
|
i17 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o17 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i18 : S = QQ[x,y,z]
o18 = S
o18 : PolynomialRing
|
i19 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o19 = ideal(x - y z - z - z )
o19 : Ideal of S
|
i20 : R = S/f
o20 = R
o20 : QuotientRing
|
i21 : time R' = integralClosure(R, Strategy => SimplifyFractions)
-- used 10.1701 seconds
o21 = R'
o21 : QuotientRing
|
i22 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o22 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,0 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,0 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,0 1,0 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i23 : S = QQ[x,y,z]
o23 = S
o23 : PolynomialRing
|
i24 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o24 = ideal(x - y z - z - z )
o24 : Ideal of S
|
i25 : R = S/f
o25 = R
o25 : QuotientRing
|
i26 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 14.3052 seconds
o26 = R'
o26 : QuotientRing
|
i27 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o27 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i28 : S = QQ[x,y,z]
o28 = S
o28 : PolynomialRing
|
i29 : f = ideal (x^8-z^6-y^2*z^4-z^3)
8 2 4 6 3
o29 = ideal(x - y z - z - z )
o29 : Ideal of S
|
i30 : R = S/f
o30 = R
o30 : QuotientRing
|
i31 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 9.9435 seconds
o31 = R'
o31 : QuotientRing
|
i32 : netList (ideal R')_*
+------------------------------------------------------------------------+
| 3 |
o32 = |w z - x |
| 4,0 |
+------------------------------------------------------------------------+
| 2 2 4 |
|w x - y z - z - z |
| 1,1 |
+------------------------------------------------------------------------+
| 4 |
|w x - w z |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 2 2 3 2 |
|w w - x y z - x z - x |
| 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 3 2 2 6 2 |
|w z + w x y z - w + x z |
| 4,0 4,0 1,1 |
+------------------------------------------------------------------------+
| 2 4 2 2 |
|w x + w x y - w y z - w |
| 4,0 4,0 1,1 1,1 |
+------------------------------------------------------------------------+
| 3 2 3 2 6 4 2 2 4 6 2 3 |
|w + w x y + w x z - x*y z - 2x*y z - x*z - 2x*y z - 2x*z - x|
| 4,0 4,0 4,0 |
+------------------------------------------------------------------------+
|
i33 : S = QQ[a,b,c,d]
o33 = S
o33 : PolynomialRing
|
i34 : f = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o34 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o34 : Ideal of S
|
i35 : R = S/f
o35 = R
o35 : QuotientRing
|
i36 : time R' = integralClosure R
-- used 1.1041 seconds
o36 = R'
o36 : QuotientRing
|
i37 : netList (ideal R')_*
+-----------+
o37 = |b*c - a*d |
+-----------+
| 2 |
|w d - c |
| 0,0 |
+-----------+
|w c - b*d|
| 0,0 |
+-----------+
|w b - a*c|
| 0,0 |
+-----------+
| 2 |
|w a - b |
| 0,0 |
+-----------+
| 2 |
|w - a*d |
| 0,0 |
+-----------+
|
i38 : S = QQ[a,b,c,d]
o38 = S
o38 : PolynomialRing
|
i39 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o39 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o39 : Ideal of S
|
i40 : R = S/I
o40 = R
o40 : QuotientRing
|
i41 : time R' = integralClosure(R, Strategy => Radical)
-- used 1.24299 seconds
o41 = R'
o41 : QuotientRing
|
i42 : icFractions R
2
c
o42 = {--, a, b, c, d}
d
o42 : List
|
i43 : S = QQ[a,b,c,d]
o43 = S
o43 : PolynomialRing
|
i44 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o44 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o44 : Ideal of S
|
i45 : R = S/I
o45 = R
o45 : QuotientRing
|
i46 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 1.63189 seconds
o46 = R'
o46 : QuotientRing
|
i47 : icFractions R
b*d
o47 = {---, a, b, c, d}
c
o47 : List
|
i48 : S = QQ[a,b,c,d]
o48 = S
o48 : PolynomialRing
|
i49 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o49 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o49 : Ideal of S
|
i50 : R = S/I
o50 = R
o50 : QuotientRing
|
i51 : time R' = integralClosure (R, Strategy => RadicalCodim1)
-- used 1.15981 seconds
o51 = R'
o51 : QuotientRing
|
i52 : icFractions R
2
c
o52 = {--, a, b, c, d}
d
o52 : List
|
i53 : S = QQ[a,b,c,d]
o53 = S
o53 : PolynomialRing
|
i54 : I = monomialCurveIdeal(S,{1,3,4})
3 2 2 2 3 2
o54 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o54 : Ideal of S
|
i55 : R = S/I
o55 = R
o55 : QuotientRing
|
i56 : time R' = integralClosure (R, Strategy => Vasconcelos)
-- used 1.03025 seconds
o56 = R'
o56 : QuotientRing
|
i57 : icFractions R
2
c
o57 = {--, a, b, c, d}
d
o57 : List
|
i58 : S' = QQ[symbol a .. symbol f]
o58 = S'
o58 : PolynomialRing
|
i59 : M' = genericSymmetricMatrix(S',a,3)
o59 = | a b c |
| b d e |
| c e f |
3 3
o59 : Matrix S' <--- S'
|
i60 : I' = minors(2,M')
2 2
o60 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o60 : Ideal of S'
|
i61 : center = ideal(b,c,e,a-d,d-f)
o61 = ideal (b, c, e, a - d, d - f)
o61 : Ideal of S'
|
i62 : S = QQ[a,b,c,d,e]
o62 = S
o62 : PolynomialRing
|
i63 : p = map(S'/I',S,gens center)
S'
o63 = map (------------------------------------------------------------------------------------------------------------------, S, {b, c, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o63 : RingMap ------------------------------------------------------------------------------------------------------------------ <--- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i64 : I = kernel p
2 2 2 2 2 2 2 3 2
o64 = ideal (a d - b d - b e + c e - d e - d*e , b c - c - a*b*d + c*d +
-----------------------------------------------------------------------
2 3 2 3 2
c*d*e, a c - c - a*b*d + c*d - a*b*e + c*d*e, b - b*c - a*c*d +
-----------------------------------------------------------------------
2 2 2 2 3 2
b*d*e, a*b - a*c - b*c*d, a b - b*c - a*c*d - a*c*e, a - a*c -
-----------------------------------------------------------------------
2
b*c*d - b*c*e - a*d*e - a*e )
o64 : Ideal of S
|
i65 : betti res I
0 1 2 3 4
o65 = total: 1 7 10 5 1
0: 1 . . . .
1: . . . . .
2: . 7 10 5 1
o65 : BettiTally
|
i66 : R = S/I
o66 = R
o66 : QuotientRing
|
i67 : time R' = integralClosure(R, Strategy => Radical)
-- used 1.52209 seconds
o67 = R'
o67 : QuotientRing
|
i68 : icFractions R
2 2
b - c
o68 = {-------, a, b, c, d, e}
d
o68 : List
|
i69 : S' = QQ[a..f]
o69 = S'
o69 : PolynomialRing
|
i70 : M' = genericSymmetricMatrix(S',a,3)
o70 = | a b c |
| b d e |
| c e f |
3 3
o70 : Matrix S' <--- S'
|
i71 : I' = minors(2,M')
2 2
o71 = ideal (- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, -
-----------------------------------------------------------------------
2
c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
o71 : Ideal of S'
|
i72 : center = ideal(b,e,a-d,d-f)
o72 = ideal (b, e, a - d, d - f)
o72 : Ideal of S'
|
i73 : S = QQ[a,b,d,e]
o73 = S
o73 : PolynomialRing
|
i74 : p = map(S'/I',S,gens center)
S'
o74 = map (------------------------------------------------------------------------------------------------------------------, S, {b, e, a - d, d - f})
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
S'
o74 : RingMap ------------------------------------------------------------------------------------------------------------------ <--- S
2 2 2
(- b + a*d, - b*c + a*e, - c*d + b*e, - b*c + a*e, - c + a*f, - c*e + b*f, - c*d + b*e, - c*e + b*f, - e + d*f)
|
i75 : I = kernel p
4 2 2 4 2 2 2 2 2 2
o75 = ideal(a - 2a b + b - b d - a d*e - b d*e - a e )
o75 : Ideal of S
|
i76 : betti res I
0 1
o76 = total: 1 1
0: 1 .
1: . .
2: . .
3: . 1
o76 : BettiTally
|
i77 : R = S/I
o77 = R
o77 : QuotientRing
|
i78 : time R' = integralClosure(R, Strategy => Radical)
-- used 6.82099 seconds
o78 = R'
o78 : QuotientRing
|
i79 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o79 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o79 : List
|
i80 : S = QQ[a,b,d,e]
o80 = S
o80 : PolynomialRing
|
i81 : R = S/sub(I,S)
o81 = R
o81 : QuotientRing
|
i82 : time R' = integralClosure(R, Strategy => AllCodimensions)
-- used 7.60423 seconds
o82 = R'
o82 : QuotientRing
|
i83 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o83 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o83 : List
|
i84 : S = QQ[a,b,d,e]
o84 = S
o84 : PolynomialRing
|
i85 : R = S/sub(I,S)
o85 = R
o85 : QuotientRing
|
i86 : time R' = integralClosure (R, Strategy => RadicalCodim1, Verbosity => 1)
[jacobian time .0095691 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time 2.59042 sec #fractions 6]
[step 1: time 2.86275 sec #fractions 6]
-- used 5.53483 seconds
o86 = R'
o86 : QuotientRing
|
i87 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o87 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o87 : List
|
i88 : S = QQ[a,b,d,e]
o88 = S
o88 : PolynomialRing
|
i89 : R = S/sub(I,S)
o89 = R
o89 : QuotientRing
|
i90 : time R' = integralClosure (R, Strategy => Vasconcelos, Verbosity => 1)
[jacobian time .0103056 sec #minors 4]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time 2.47024 sec #fractions 6]
[step 1: time 4.6275 sec #fractions 6]
-- used 7.18619 seconds
o90 = R'
o90 : QuotientRing
|
i91 : icFractions R
2 2 2 3 2
a - b a b - b + b*d + b*d*e
o91 = {-------, -----------------------, a, b, d, e}
d + e a*d + a*e
o91 : List
|
i92 : S = QQ[a,b,d,e]
o92 = S
o92 : PolynomialRing
|
i93 : R = S/sub(I,S)
o93 = R
o93 : QuotientRing
|
i94 : time R' = integralClosure (R, Strategy => {Vasconcelos, StartWithOneMinor}, Verbosity => 1)
[jacobian time .0143691 sec #minors 1]
integral closure nvars 4 numgens 1 is S2 codim 1 codimJ 2
[step 0: time 2.97854 sec #fractions 6]
[step 1: time 8.14967 sec #fractions 6]
-- used 11.2127 seconds
o94 = R'
o94 : QuotientRing
|
i95 : icFractions R
2 2 2 2 3 2
2a - 2b - d*e - e a b - b + b*d + b*d*e
o95 = {--------------------, -----------------------, a, b, d, e}
d + e a*d + a*e
o95 : List
|
i96 : ideal R'
2 2 2
o96 = ideal (w d + w e - 2a + 2b + d*e + e , w b - 2w a + 2b*d +
0,0 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
b*e, w a - 2w b - a*e, 2w + w e - 2a + 2d*e + e , w w +
0,0 0,1 0,1 0,0 0,0 0,1
-----------------------------------------------------------------------
2 2 2
w e - 2a*b, w - 4b - e )
0,1 0,0
o96 : Ideal of QQ[w ..w , a..b, d..e]
0,0 0,1
|