next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.0039041 seconds elapsed
 -- 0.0214755 seconds elapsed
 -- 0.0070187 seconds elapsed
 -- 0.0028692 seconds elapsed
 -- 0.0245252 seconds elapsed
 -- 0.0099832 seconds elapsed
 -- 0.00314 seconds elapsed
 -- 0.0041104 seconds elapsed
 -- 0.0077446 seconds elapsed
 -- 0.0040352 seconds elapsed
 -- 0.0240208 seconds elapsed
 -- 0.0099541 seconds elapsed
 -- 0.0028277 seconds elapsed
 -- 0.0163753 seconds elapsed
 -- 0.0077664 seconds elapsed
 -- 0.0018074 seconds elapsed
 -- 0.0149065 seconds elapsed
 -- 0.0053748 seconds elapsed
 -- 0.0019216 seconds elapsed
 -- 0.0151691 seconds elapsed
 -- 0.0050619 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.002941 seconds elapsed
 -- 0.0155821 seconds elapsed
 -- 0.0051981 seconds elapsed
 -- 0.003297 seconds elapsed
 -- 0.0267878 seconds elapsed
 -- 0.0099029 seconds elapsed
 -- 0.0018891 seconds elapsed
 -- 0.0140724 seconds elapsed
 -- 0.0050849 seconds elapsed
 -- 0.0022258 seconds elapsed
 -- 0.0154457 seconds elapsed
 -- 0.0053961 seconds elapsed
 -- 0.0037378 seconds elapsed
 -- 0.0234208 seconds elapsed
 -- 0.0093477 seconds elapsed
 -- 0.0021765 seconds elapsed
 -- 0.023687 seconds elapsed
 -- 0.0103416 seconds elapsed
 -- 0.0048607 seconds elapsed
 -- 0.0322564 seconds elapsed
 -- 0.0103949 seconds elapsed
 -- 0.0033004 seconds elapsed
 -- 0.0282634 seconds elapsed
 -- 0.0094139 seconds elapsed
 -- 0.0019237 seconds elapsed
 -- 0.0141278 seconds elapsed
 -- 0.0057728 seconds elapsed
 -- 0.0020911 seconds elapsed
 -- 0.0140375 seconds elapsed
 -- 0.0084736 seconds elapsed
 -- 0.0050601 seconds elapsed
 -- 0.0188662 seconds elapsed
 -- 0.0059087 seconds elapsed
 -- 0.0022034 seconds elapsed
 -- 0.0143386 seconds elapsed
 -- 0.0053104 seconds elapsed
 -- 0.0036621 seconds elapsed
 -- 0.0261487 seconds elapsed
 -- 0.0076985 seconds elapsed
 -- 0.0019087 seconds elapsed
 -- 0.0201196 seconds elapsed
 -- 0.0070794 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.