We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : elapsedTime T=carpetBettiTable(a,b,3)
-- 0.060753 seconds elapsed
-- 0.160143 seconds elapsed
-- 0.713094 seconds elapsed
-- 0.627127 seconds elapsed
-- 0.105648 seconds elapsed
-- 5.55695 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o2 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : BettiTally
|
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o3 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i4 : elapsedTime T'=minimalBetti J
-- 10.9387 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o4 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o4 : BettiTally
|
i5 : T-T'
0 1 2 3 4 5 6 7 8 9
o5 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o5 : BettiTally
|
i6 : elapsedTime h=carpetBettiTables(6,6);
-- 0.128531 seconds elapsed
-- 0.520954 seconds elapsed
-- 3.18292 seconds elapsed
-- 25.3414 seconds elapsed
-- 13.87 seconds elapsed
-- 0.972158 seconds elapsed
-- 0.1687 seconds elapsed
-- 101.252 seconds elapsed
|
i7 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o7 : BettiTally
|
i8 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o8 : BettiTally
|